Metamath Proof Explorer


Theorem f1ocoima

Description: The composition of two bijections as bijection onto the image of the range of the first bijection. (Contributed by AV, 15-Aug-2025)

Ref Expression
Assertion f1ocoima F : A 1-1 onto B G : C 1-1 onto D B C G F : A 1-1 onto G B

Proof

Step Hyp Ref Expression
1 f1of1 G : C 1-1 onto D G : C 1-1 D
2 1 anim1i G : C 1-1 onto D B C G : C 1-1 D B C
3 2 3adant1 F : A 1-1 onto B G : C 1-1 onto D B C G : C 1-1 D B C
4 f1ores G : C 1-1 D B C G B : B 1-1 onto G B
5 3 4 syl F : A 1-1 onto B G : C 1-1 onto D B C G B : B 1-1 onto G B
6 simp1 F : A 1-1 onto B G : C 1-1 onto D B C F : A 1-1 onto B
7 f1oco G B : B 1-1 onto G B F : A 1-1 onto B G B F : A 1-1 onto G B
8 5 6 7 syl2anc F : A 1-1 onto B G : C 1-1 onto D B C G B F : A 1-1 onto G B
9 f1ofo F : A 1-1 onto B F : A onto B
10 forn F : A onto B ran F = B
11 9 10 syl F : A 1-1 onto B ran F = B
12 11 eqimssd F : A 1-1 onto B ran F B
13 12 3ad2ant1 F : A 1-1 onto B G : C 1-1 onto D B C ran F B
14 cores ran F B G B F = G F
15 14 eqcomd ran F B G F = G B F
16 13 15 syl F : A 1-1 onto B G : C 1-1 onto D B C G F = G B F
17 16 f1oeq1d F : A 1-1 onto B G : C 1-1 onto D B C G F : A 1-1 onto G B G B F : A 1-1 onto G B
18 8 17 mpbird F : A 1-1 onto B G : C 1-1 onto D B C G F : A 1-1 onto G B