Metamath Proof Explorer


Theorem uspgrlim

Description: A local isomorphism of simple pseudographs is a bijection between their vertices that preserves neighborhoods, expressed by properties of their edges (not edge functions as in isgrlim2 ). (Contributed by AV, 15-Aug-2025)

Ref Expression
Hypotheses uspgrlim.v 𝑉 = ( Vtx ‘ 𝐺 )
uspgrlim.w 𝑊 = ( Vtx ‘ 𝐻 )
uspgrlim.n 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 )
uspgrlim.m 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) )
uspgrlim.i 𝐼 = ( Edg ‘ 𝐺 )
uspgrlim.j 𝐽 = ( Edg ‘ 𝐻 )
uspgrlim.k 𝐾 = { 𝑥𝐼𝑥𝑁 }
uspgrlim.l 𝐿 = { 𝑥𝐽𝑥𝑀 }
Assertion uspgrlim ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑣𝑉𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 uspgrlim.v 𝑉 = ( Vtx ‘ 𝐺 )
2 uspgrlim.w 𝑊 = ( Vtx ‘ 𝐻 )
3 uspgrlim.n 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 )
4 uspgrlim.m 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) )
5 uspgrlim.i 𝐼 = ( Edg ‘ 𝐺 )
6 uspgrlim.j 𝐽 = ( Edg ‘ 𝐻 )
7 uspgrlim.k 𝐾 = { 𝑥𝐼𝑥𝑁 }
8 uspgrlim.l 𝐿 = { 𝑥𝐽𝑥𝑀 }
9 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
10 eqid ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 )
11 eqid { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 }
12 eqid { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 }
13 1 2 3 4 9 10 11 12 isgrlim2 ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑣𝑉𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) ) ) )
14 fvex ( iEdg ‘ 𝐻 ) ∈ V
15 vex ∈ V
16 14 15 coex ( ( iEdg ‘ 𝐻 ) ∘ ) ∈ V
17 fvex ( iEdg ‘ 𝐺 ) ∈ V
18 17 cnvex ( iEdg ‘ 𝐺 ) ∈ V
19 16 18 coex ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) ∈ V
20 19 a1i ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) ∈ V )
21 9 uspgrf1oedg ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) )
22 21 ad2antrr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) )
23 simprl ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } )
24 10 uspgrf1oedg ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) )
25 24 ad2antlr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) )
26 ssrab2 { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 )
27 ssrab2 { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom ( iEdg ‘ 𝐻 )
28 26 27 pm3.2i ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom ( iEdg ‘ 𝐻 ) )
29 28 a1i ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom ( iEdg ‘ 𝐻 ) ) )
30 3f1oss1 ( ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ∧ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ) ∧ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom ( iEdg ‘ 𝐻 ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) : ( ( iEdg ‘ 𝐺 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) –1-1-onto→ ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) )
31 22 23 25 29 30 syl31anc ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) : ( ( iEdg ‘ 𝐺 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) –1-1-onto→ ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) )
32 eqidd ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) = ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) )
33 3 5 7 uspgrlimlem1 ( 𝐺 ∈ USPGraph → 𝐾 = ( ( iEdg ‘ 𝐺 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) )
34 33 ad2antrr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → 𝐾 = ( ( iEdg ‘ 𝐺 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) )
35 4 6 8 uspgrlimlem1 ( 𝐻 ∈ USPGraph → 𝐿 = ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) )
36 35 ad2antlr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → 𝐿 = ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) )
37 32 34 36 f1oeq123d ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → ( ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) : 𝐾1-1-onto𝐿 ↔ ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) : ( ( iEdg ‘ 𝐺 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) –1-1-onto→ ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) ) )
38 31 37 mpbird ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) : 𝐾1-1-onto𝐿 )
39 simpll ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → 𝐺 ∈ USPGraph )
40 simprr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) )
41 1 2 3 4 5 6 7 8 uspgrlimlem3 ( ( 𝐺 ∈ USPGraph ∧ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) → ( 𝑒𝐾 → ( 𝑓𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) )
42 39 23 40 41 syl3anc ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → ( 𝑒𝐾 → ( 𝑓𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) )
43 42 ralrimiv ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) )
44 38 43 jca ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → ( ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) )
45 f1oeq1 ( 𝑔 = ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) → ( 𝑔 : 𝐾1-1-onto𝐿 ↔ ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) : 𝐾1-1-onto𝐿 ) )
46 fveq1 ( 𝑔 = ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) → ( 𝑔𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) )
47 46 eqeq2d ( 𝑔 = ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) → ( ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ↔ ( 𝑓𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) )
48 47 ralbidv ( 𝑔 = ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ↔ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) )
49 45 48 anbi12d ( 𝑔 = ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) → ( ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ↔ ( ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) ) )
50 20 44 49 spcedv ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) → ∃ 𝑔 ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) )
51 50 ex ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) → ∃ 𝑔 ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) )
52 51 exlimdv ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ∃ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) → ∃ 𝑔 ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) )
53 14 cnvex ( iEdg ‘ 𝐻 ) ∈ V
54 vex 𝑔 ∈ V
55 53 54 coex ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∈ V
56 55 17 coex ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ∈ V
57 56 a1i ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ∈ V )
58 21 ad2antrr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) )
59 simprl ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → 𝑔 : 𝐾1-1-onto𝐿 )
60 24 ad2antlr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) )
61 5 rabeqi { 𝑥𝐼𝑥𝑁 } = { 𝑥 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑥𝑁 }
62 7 61 eqtri 𝐾 = { 𝑥 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑥𝑁 }
63 62 ssrab3 𝐾 ⊆ ( Edg ‘ 𝐺 )
64 6 rabeqi { 𝑥𝐽𝑥𝑀 } = { 𝑥 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑥𝑀 }
65 8 64 eqtri 𝐿 = { 𝑥 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑥𝑀 }
66 65 ssrab3 𝐿 ⊆ ( Edg ‘ 𝐻 )
67 63 66 pm3.2i ( 𝐾 ⊆ ( Edg ‘ 𝐺 ) ∧ 𝐿 ⊆ ( Edg ‘ 𝐻 ) )
68 67 a1i ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ( 𝐾 ⊆ ( Edg ‘ 𝐺 ) ∧ 𝐿 ⊆ ( Edg ‘ 𝐻 ) ) )
69 3f1oss2 ( ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ∧ 𝑔 : 𝐾1-1-onto𝐿 ∧ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ) ∧ ( 𝐾 ⊆ ( Edg ‘ 𝐺 ) ∧ 𝐿 ⊆ ( Edg ‘ 𝐻 ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : ( ( iEdg ‘ 𝐺 ) “ 𝐾 ) –1-1-onto→ ( ( iEdg ‘ 𝐻 ) “ 𝐿 ) )
70 58 59 60 68 69 syl31anc ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : ( ( iEdg ‘ 𝐺 ) “ 𝐾 ) –1-1-onto→ ( ( iEdg ‘ 𝐻 ) “ 𝐿 ) )
71 eqidd ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) = ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) )
72 3 5 7 uspgrlimlem2 ( 𝐺 ∈ USPGraph → ( ( iEdg ‘ 𝐺 ) “ 𝐾 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } )
73 72 ad2antrr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ( ( iEdg ‘ 𝐺 ) “ 𝐾 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } )
74 4 6 8 uspgrlimlem2 ( 𝐻 ∈ USPGraph → ( ( iEdg ‘ 𝐻 ) “ 𝐿 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } )
75 74 ad2antlr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ( ( iEdg ‘ 𝐻 ) “ 𝐿 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } )
76 71 73 75 f1oeq123d ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ( ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : ( ( iEdg ‘ 𝐺 ) “ 𝐾 ) –1-1-onto→ ( ( iEdg ‘ 𝐻 ) “ 𝐿 ) ↔ ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) )
77 70 76 mpbid ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } )
78 fveq2 ( 𝑥 = 𝑖 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) )
79 78 sseq1d ( 𝑥 = 𝑖 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) )
80 79 elrab ( 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ↔ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) )
81 1 2 3 4 5 6 7 8 uspgrlimlem4 ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) )
82 80 81 biimtrid ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ( 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) )
83 82 ralrimiv ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) )
84 77 83 jca ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ( ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) )
85 f1oeq1 ( = ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) → ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ↔ ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) )
86 fveq1 ( = ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) → ( 𝑖 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) )
87 86 fveq2d ( = ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) )
88 87 eqeq2d ( = ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ↔ ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) )
89 88 ralbidv ( = ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ↔ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) )
90 85 89 anbi12d ( = ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) → ( ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ↔ ( ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) ) )
91 57 84 90 spcedv ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ∃ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) )
92 91 ex ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) → ∃ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) )
93 92 exlimdv ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ∃ 𝑔 ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) → ∃ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) )
94 52 93 impbid ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ∃ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) )
95 94 anbi2d ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) ↔ ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) )
96 95 exbidv ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ∃ 𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) )
97 96 ralbidv ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ∀ 𝑣𝑉𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) ↔ ∀ 𝑣𝑉𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) )
98 97 anbi2d ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑣𝑉𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) ) ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑣𝑉𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) ) )
99 98 3adant3 ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑍 ) → ( ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑣𝑉𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ ( : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 ) ) ) ) ) ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑣𝑉𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) ) )
100 13 99 bitrd ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑣𝑉𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) ) )