Step |
Hyp |
Ref |
Expression |
1 |
|
usgrlimprop.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
usgrlimprop.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
3 |
|
usgrlimprop.n |
⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) |
4 |
|
usgrlimprop.m |
⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) |
5 |
|
usgrlimprop.i |
⊢ 𝐼 = ( Edg ‘ 𝐺 ) |
6 |
|
usgrlimprop.j |
⊢ 𝐽 = ( Edg ‘ 𝐻 ) |
7 |
|
usgrlimprop.k |
⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } |
8 |
|
usgrlimprop.l |
⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } |
9 |
|
simp3 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) |
10 |
1 2 3 4 5 6 7 8
|
uspgrlim |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) ) |
11 |
9 10
|
mpbid |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |