Metamath Proof Explorer


Theorem usgrlimprop

Description: Properties of a local isomorphism of simple pseudographs. (Contributed by AV, 17-Aug-2025)

Ref Expression
Hypotheses usgrlimprop.v 𝑉 = ( Vtx ‘ 𝐺 )
usgrlimprop.w 𝑊 = ( Vtx ‘ 𝐻 )
usgrlimprop.n 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 )
usgrlimprop.m 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) )
usgrlimprop.i 𝐼 = ( Edg ‘ 𝐺 )
usgrlimprop.j 𝐽 = ( Edg ‘ 𝐻 )
usgrlimprop.k 𝐾 = { 𝑥𝐼𝑥𝑁 }
usgrlimprop.l 𝐿 = { 𝑥𝐽𝑥𝑀 }
Assertion usgrlimprop ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑣𝑉𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 usgrlimprop.v 𝑉 = ( Vtx ‘ 𝐺 )
2 usgrlimprop.w 𝑊 = ( Vtx ‘ 𝐻 )
3 usgrlimprop.n 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 )
4 usgrlimprop.m 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) )
5 usgrlimprop.i 𝐼 = ( Edg ‘ 𝐺 )
6 usgrlimprop.j 𝐽 = ( Edg ‘ 𝐻 )
7 usgrlimprop.k 𝐾 = { 𝑥𝐼𝑥𝑁 }
8 usgrlimprop.l 𝐿 = { 𝑥𝐽𝑥𝑀 }
9 simp3 ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) )
10 1 2 3 4 5 6 7 8 uspgrlim ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑣𝑉𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) ) )
11 9 10 mpbid ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∀ 𝑣𝑉𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾1-1-onto𝐿 ∧ ∀ 𝑒𝐾 ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) )