Metamath Proof Explorer


Theorem clnbgrvtxedg

Description: An edge E containing a vertex A is an edge in the closed neighborhood of this vertex A . (Contributed by AV, 25-Dec-2025)

Ref Expression
Hypotheses clnbgrvtxedg.n 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 )
clnbgrvtxedg.i 𝐼 = ( Edg ‘ 𝐺 )
clnbgrvtxedg.k 𝐾 = { 𝑥𝐼𝑥𝑁 }
Assertion clnbgrvtxedg ( ( 𝐺 ∈ UHGraph ∧ 𝐸𝐼𝐴𝐸 ) → 𝐸𝐾 )

Proof

Step Hyp Ref Expression
1 clnbgrvtxedg.n 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 )
2 clnbgrvtxedg.i 𝐼 = ( Edg ‘ 𝐺 )
3 clnbgrvtxedg.k 𝐾 = { 𝑥𝐼𝑥𝑁 }
4 simp2 ( ( 𝐺 ∈ UHGraph ∧ 𝐸𝐼𝐴𝐸 ) → 𝐸𝐼 )
5 2 1 clnbgrssedg ( ( 𝐺 ∈ UHGraph ∧ 𝐸𝐼𝐴𝐸 ) → 𝐸𝑁 )
6 sseq1 ( 𝑥 = 𝐸 → ( 𝑥𝑁𝐸𝑁 ) )
7 6 3 elrab2 ( 𝐸𝐾 ↔ ( 𝐸𝐼𝐸𝑁 ) )
8 4 5 7 sylanbrc ( ( 𝐺 ∈ UHGraph ∧ 𝐸𝐼𝐴𝐸 ) → 𝐸𝐾 )