Description: An edge E containing a vertex A is an edge in the closed neighborhood of this vertex A . (Contributed by AV, 25-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrvtxedg.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) | |
| clnbgrvtxedg.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | ||
| clnbgrvtxedg.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | ||
| Assertion | clnbgrvtxedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) → 𝐸 ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxedg.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) | |
| 2 | clnbgrvtxedg.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | |
| 3 | clnbgrvtxedg.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | |
| 4 | simp2 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) → 𝐸 ∈ 𝐼 ) | |
| 5 | 2 1 | clnbgrssedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) → 𝐸 ⊆ 𝑁 ) |
| 6 | sseq1 | ⊢ ( 𝑥 = 𝐸 → ( 𝑥 ⊆ 𝑁 ↔ 𝐸 ⊆ 𝑁 ) ) | |
| 7 | 6 3 | elrab2 | ⊢ ( 𝐸 ∈ 𝐾 ↔ ( 𝐸 ∈ 𝐼 ∧ 𝐸 ⊆ 𝑁 ) ) |
| 8 | 4 5 7 | sylanbrc | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) → 𝐸 ∈ 𝐾 ) |