| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbgrvtxedg.n |
⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) |
| 2 |
|
clnbgrvtxedg.i |
⊢ 𝐼 = ( Edg ‘ 𝐺 ) |
| 3 |
|
clnbgrvtxedg.k |
⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } |
| 4 |
|
grlimedgclnbgr.m |
⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) |
| 5 |
|
grlimedgclnbgr.j |
⊢ 𝐽 = ( Edg ‘ 𝐻 ) |
| 6 |
|
grlimedgclnbgr.l |
⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } |
| 7 |
|
simp1l |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐺 ∈ USPGraph ) |
| 8 |
|
simp1r |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐻 ∈ USPGraph ) |
| 9 |
|
simp2 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) |
| 10 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 11 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
| 12 |
|
eqid |
⊢ ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx 𝑣 ) |
| 13 |
|
eqid |
⊢ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) |
| 14 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ↔ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ) ) |
| 15 |
14
|
cbvrabv |
⊢ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = { 𝑦 ∈ 𝐼 ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } |
| 16 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ↔ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 17 |
16
|
cbvrabv |
⊢ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } = { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } |
| 18 |
10 11 12 13 2 5 15 17
|
usgrlimprop |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 19 |
7 8 9 18
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 20 |
|
uspgruhgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UHGraph ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐺 ∈ UHGraph ) |
| 23 |
2
|
eleq2i |
⊢ ( 𝐸 ∈ 𝐼 ↔ 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
| 24 |
23
|
biimpi |
⊢ ( 𝐸 ∈ 𝐼 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
| 26 |
25
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
| 27 |
|
simp3r |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐴 ∈ 𝐸 ) |
| 28 |
|
uhgredgrnv |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝐴 ∈ 𝐸 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 29 |
22 26 27 28
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 30 |
|
eqidd |
⊢ ( 𝑣 = 𝐴 → 𝑓 = 𝑓 ) |
| 31 |
|
oveq2 |
⊢ ( 𝑣 = 𝐴 → ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 32 |
|
fveq2 |
⊢ ( 𝑣 = 𝐴 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝑣 = 𝐴 → ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 34 |
30 31 33
|
f1oeq123d |
⊢ ( 𝑣 = 𝐴 → ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ↔ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 35 |
|
eqidd |
⊢ ( 𝑣 = 𝐴 → 𝑔 = 𝑔 ) |
| 36 |
31
|
sseq2d |
⊢ ( 𝑣 = 𝐴 → ( 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ↔ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) ) ) |
| 37 |
36
|
rabbidv |
⊢ ( 𝑣 = 𝐴 → { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ) |
| 38 |
33
|
sseq2d |
⊢ ( 𝑣 = 𝐴 → ( 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ↔ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 39 |
38
|
rabbidv |
⊢ ( 𝑣 = 𝐴 → { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) |
| 40 |
35 37 39
|
f1oeq123d |
⊢ ( 𝑣 = 𝐴 → ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ↔ 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ) |
| 41 |
37
|
raleqdv |
⊢ ( 𝑣 = 𝐴 → ( ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) |
| 42 |
40 41
|
anbi12d |
⊢ ( 𝑣 = 𝐴 → ( ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ↔ ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) |
| 43 |
42
|
exbidv |
⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ↔ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) |
| 44 |
34 43
|
anbi12d |
⊢ ( 𝑣 = 𝐴 → ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ↔ ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 45 |
44
|
exbidv |
⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 46 |
45
|
rspcv |
⊢ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 47 |
29 46
|
syl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 48 |
|
eqid |
⊢ 𝑓 = 𝑓 |
| 49 |
|
id |
⊢ ( 𝑓 = 𝑓 → 𝑓 = 𝑓 ) |
| 50 |
1
|
a1i |
⊢ ( 𝑓 = 𝑓 → 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 51 |
4
|
a1i |
⊢ ( 𝑓 = 𝑓 → 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 52 |
49 50 51
|
f1oeq123d |
⊢ ( 𝑓 = 𝑓 → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ↔ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 53 |
48 52
|
ax-mp |
⊢ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ↔ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 54 |
53
|
biimpri |
⊢ ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) → 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) |
| 55 |
54
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) |
| 56 |
55
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) |
| 57 |
|
eqid |
⊢ 𝑔 = 𝑔 |
| 58 |
|
id |
⊢ ( 𝑔 = 𝑔 → 𝑔 = 𝑔 ) |
| 59 |
1
|
sseq2i |
⊢ ( 𝑥 ⊆ 𝑁 ↔ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 60 |
3 59
|
rabbieq |
⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } |
| 61 |
60
|
a1i |
⊢ ( 𝑔 = 𝑔 → 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ) |
| 62 |
4
|
sseq2i |
⊢ ( 𝑥 ⊆ 𝑀 ↔ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 63 |
6 62
|
rabbieq |
⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } |
| 64 |
63
|
a1i |
⊢ ( 𝑔 = 𝑔 → 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) |
| 65 |
58 61 64
|
f1oeq123d |
⊢ ( 𝑔 = 𝑔 → ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ↔ 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ) |
| 66 |
57 65
|
ax-mp |
⊢ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ↔ 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) |
| 67 |
66
|
biimpri |
⊢ ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } → 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) |
| 69 |
68
|
adantl |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) |
| 70 |
|
simp3l |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐸 ∈ 𝐼 ) |
| 71 |
|
eqid |
⊢ ( 𝐺 ClNeighbVtx 𝐴 ) = ( 𝐺 ClNeighbVtx 𝐴 ) |
| 72 |
|
eqid |
⊢ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } |
| 73 |
71 2 72
|
clnbgrvtxedg |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) → 𝐸 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ) |
| 74 |
22 70 27 73
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → 𝐸 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ) |
| 75 |
|
imaeq2 |
⊢ ( 𝑒 = 𝐸 → ( 𝑓 “ 𝑒 ) = ( 𝑓 “ 𝐸 ) ) |
| 76 |
|
fveq2 |
⊢ ( 𝑒 = 𝐸 → ( 𝑔 ‘ 𝑒 ) = ( 𝑔 ‘ 𝐸 ) ) |
| 77 |
75 76
|
eqeq12d |
⊢ ( 𝑒 = 𝐸 → ( ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) |
| 78 |
77
|
rspcv |
⊢ ( 𝐸 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } → ( ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) |
| 79 |
74 78
|
syl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) |
| 80 |
79
|
adantld |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) |
| 81 |
80
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) |
| 82 |
81
|
imp |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) |
| 83 |
56 69 82
|
3jca |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) |
| 84 |
83
|
ex |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) ) |
| 85 |
84
|
eximdv |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) ) |
| 86 |
85
|
expimpd |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) ) |
| 87 |
86
|
eximdv |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) ) |
| 88 |
47 87
|
syld |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) ) |
| 89 |
88
|
adantld |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ( ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) ) |
| 90 |
19 89
|
mpd |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸 ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ 𝐸 ) = ( 𝑔 ‘ 𝐸 ) ) ) |