Metamath Proof Explorer


Theorem grlimedgclnbgr

Description: For two locally isomorphic graphs G and H and a vertex A of G there are two bijections f and g mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) and the edges between the vertices in N onto the edges between the vertices in M , so that the mapped vertices of an edge E containing the vertex A is an edge between the vertices in M . (Contributed by AV, 25-Dec-2025)

Ref Expression
Hypotheses clnbgrvtxedg.n 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 )
clnbgrvtxedg.i 𝐼 = ( Edg ‘ 𝐺 )
clnbgrvtxedg.k 𝐾 = { 𝑥𝐼𝑥𝑁 }
grlimedgclnbgr.m 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) )
grlimedgclnbgr.j 𝐽 = ( Edg ‘ 𝐻 )
grlimedgclnbgr.l 𝐿 = { 𝑥𝐽𝑥𝑀 }
Assertion grlimedgclnbgr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → ∃ 𝑓𝑔 ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓𝐸 ) = ( 𝑔𝐸 ) ) )

Proof

Step Hyp Ref Expression
1 clnbgrvtxedg.n 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 )
2 clnbgrvtxedg.i 𝐼 = ( Edg ‘ 𝐺 )
3 clnbgrvtxedg.k 𝐾 = { 𝑥𝐼𝑥𝑁 }
4 grlimedgclnbgr.m 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) )
5 grlimedgclnbgr.j 𝐽 = ( Edg ‘ 𝐻 )
6 grlimedgclnbgr.l 𝐿 = { 𝑥𝐽𝑥𝑀 }
7 simp1l ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → 𝐺 ∈ USPGraph )
8 simp1r ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → 𝐻 ∈ USPGraph )
9 simp2 ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) )
10 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
11 eqid ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 )
12 eqid ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx 𝑣 )
13 eqid ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) )
14 sseq1 ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ↔ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ) )
15 14 cbvrabv { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = { 𝑦𝐼𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) }
16 sseq1 ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) ↔ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) ) )
17 16 cbvrabv { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) } = { 𝑦𝐽𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) }
18 10 11 12 13 2 5 15 17 usgrlimprop ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) )
19 7 8 9 18 syl3anc ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) )
20 uspgruhgr ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph )
21 20 adantr ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UHGraph )
22 21 3ad2ant1 ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → 𝐺 ∈ UHGraph )
23 2 eleq2i ( 𝐸𝐼𝐸 ∈ ( Edg ‘ 𝐺 ) )
24 23 biimpi ( 𝐸𝐼𝐸 ∈ ( Edg ‘ 𝐺 ) )
25 24 adantr ( ( 𝐸𝐼𝐴𝐸 ) → 𝐸 ∈ ( Edg ‘ 𝐺 ) )
26 25 3ad2ant3 ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → 𝐸 ∈ ( Edg ‘ 𝐺 ) )
27 simp3r ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → 𝐴𝐸 )
28 uhgredgrnv ( ( 𝐺 ∈ UHGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝐴𝐸 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) )
29 22 26 27 28 syl3anc ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) )
30 eqidd ( 𝑣 = 𝐴𝑓 = 𝑓 )
31 oveq2 ( 𝑣 = 𝐴 → ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx 𝐴 ) )
32 fveq2 ( 𝑣 = 𝐴 → ( 𝐹𝑣 ) = ( 𝐹𝐴 ) )
33 32 oveq2d ( 𝑣 = 𝐴 → ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) )
34 30 31 33 f1oeq123d ( 𝑣 = 𝐴 → ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) ↔ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ) )
35 eqidd ( 𝑣 = 𝐴𝑔 = 𝑔 )
36 31 sseq2d ( 𝑣 = 𝐴 → ( 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ↔ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) ) )
37 36 rabbidv ( 𝑣 = 𝐴 → { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } )
38 33 sseq2d ( 𝑣 = 𝐴 → ( 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) ↔ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ) )
39 38 rabbidv ( 𝑣 = 𝐴 → { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) } = { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } )
40 35 37 39 f1oeq123d ( 𝑣 = 𝐴 → ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) } ↔ 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ) )
41 37 raleqdv ( 𝑣 = 𝐴 → ( ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ↔ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) )
42 40 41 anbi12d ( 𝑣 = 𝐴 → ( ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ↔ ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) )
43 42 exbidv ( 𝑣 = 𝐴 → ( ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ↔ ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) )
44 34 43 anbi12d ( 𝑣 = 𝐴 → ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ↔ ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) )
45 44 exbidv ( 𝑣 = 𝐴 → ( ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) )
46 45 rspcv ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) )
47 29 46 syl ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) )
48 eqid 𝑓 = 𝑓
49 id ( 𝑓 = 𝑓𝑓 = 𝑓 )
50 1 a1i ( 𝑓 = 𝑓𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) )
51 4 a1i ( 𝑓 = 𝑓𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) )
52 49 50 51 f1oeq123d ( 𝑓 = 𝑓 → ( 𝑓 : 𝑁1-1-onto𝑀𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ) )
53 48 52 ax-mp ( 𝑓 : 𝑁1-1-onto𝑀𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) )
54 53 biimpri ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) → 𝑓 : 𝑁1-1-onto𝑀 )
55 54 adantl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ) → 𝑓 : 𝑁1-1-onto𝑀 )
56 55 adantr ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ) ∧ ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → 𝑓 : 𝑁1-1-onto𝑀 )
57 eqid 𝑔 = 𝑔
58 id ( 𝑔 = 𝑔𝑔 = 𝑔 )
59 1 sseq2i ( 𝑥𝑁𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) )
60 3 59 rabbieq 𝐾 = { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) }
61 60 a1i ( 𝑔 = 𝑔𝐾 = { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } )
62 4 sseq2i ( 𝑥𝑀𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) )
63 6 62 rabbieq 𝐿 = { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) }
64 63 a1i ( 𝑔 = 𝑔𝐿 = { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } )
65 58 61 64 f1oeq123d ( 𝑔 = 𝑔 → ( 𝑔 : 𝐾1-1-onto𝐿𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ) )
66 57 65 ax-mp ( 𝑔 : 𝐾1-1-onto𝐿𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } )
67 66 biimpri ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } → 𝑔 : 𝐾1-1-onto𝐿 )
68 67 adantr ( ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) → 𝑔 : 𝐾1-1-onto𝐿 )
69 68 adantl ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ) ∧ ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → 𝑔 : 𝐾1-1-onto𝐿 )
70 simp3l ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → 𝐸𝐼 )
71 eqid ( 𝐺 ClNeighbVtx 𝐴 ) = ( 𝐺 ClNeighbVtx 𝐴 )
72 eqid { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } = { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) }
73 71 2 72 clnbgrvtxedg ( ( 𝐺 ∈ UHGraph ∧ 𝐸𝐼𝐴𝐸 ) → 𝐸 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } )
74 22 70 27 73 syl3anc ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → 𝐸 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } )
75 imaeq2 ( 𝑒 = 𝐸 → ( 𝑓𝑒 ) = ( 𝑓𝐸 ) )
76 fveq2 ( 𝑒 = 𝐸 → ( 𝑔𝑒 ) = ( 𝑔𝐸 ) )
77 75 76 eqeq12d ( 𝑒 = 𝐸 → ( ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ↔ ( 𝑓𝐸 ) = ( 𝑔𝐸 ) ) )
78 77 rspcv ( 𝐸 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } → ( ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) → ( 𝑓𝐸 ) = ( 𝑔𝐸 ) ) )
79 74 78 syl ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → ( ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) → ( 𝑓𝐸 ) = ( 𝑔𝐸 ) ) )
80 79 adantld ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → ( ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) → ( 𝑓𝐸 ) = ( 𝑔𝐸 ) ) )
81 80 adantr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ) → ( ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) → ( 𝑓𝐸 ) = ( 𝑔𝐸 ) ) )
82 81 imp ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ) ∧ ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ( 𝑓𝐸 ) = ( 𝑔𝐸 ) )
83 56 69 82 3jca ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ) ∧ ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓𝐸 ) = ( 𝑔𝐸 ) ) )
84 83 ex ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ) → ( ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) → ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓𝐸 ) = ( 𝑔𝐸 ) ) ) )
85 84 eximdv ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ) → ( ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) → ∃ 𝑔 ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓𝐸 ) = ( 𝑔𝐸 ) ) ) )
86 85 expimpd ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ∃ 𝑔 ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓𝐸 ) = ( 𝑔𝐸 ) ) ) )
87 86 eximdv ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → ( ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ∃ 𝑓𝑔 ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓𝐸 ) = ( 𝑔𝐸 ) ) ) )
88 47 87 syld ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) → ∃ 𝑓𝑔 ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓𝐸 ) = ( 𝑔𝐸 ) ) ) )
89 88 adantld ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → ( ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑥𝐽𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹𝑣 ) ) } ∧ ∀ 𝑒 ∈ { 𝑥𝐼𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓𝑒 ) = ( 𝑔𝑒 ) ) ) ) → ∃ 𝑓𝑔 ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓𝐸 ) = ( 𝑔𝐸 ) ) ) )
90 19 89 mpd ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐸𝐼𝐴𝐸 ) ) → ∃ 𝑓𝑔 ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓𝐸 ) = ( 𝑔𝐸 ) ) )