| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbgrvtxedg.n |
⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) |
| 2 |
|
clnbgrvtxedg.i |
⊢ 𝐼 = ( Edg ‘ 𝐺 ) |
| 3 |
|
clnbgrvtxedg.k |
⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } |
| 4 |
|
grlimedgclnbgr.m |
⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) |
| 5 |
|
grlimedgclnbgr.j |
⊢ 𝐽 = ( Edg ‘ 𝐻 ) |
| 6 |
|
grlimedgclnbgr.l |
⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } |
| 7 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → { 𝐴 , 𝐵 } ∈ 𝐼 ) |
| 8 |
|
prid1g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 10 |
7 9
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → ( { 𝐴 , 𝐵 } ∈ 𝐼 ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) ) |
| 11 |
1 2 3 4 5 6
|
grlimedgclnbgr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐼 ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) |
| 12 |
10 11
|
syl3an3 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) |
| 13 |
|
simpr1 |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) |
| 14 |
|
simpr2 |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) |
| 15 |
|
f1ofn |
⊢ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 → 𝑓 Fn 𝑁 ) |
| 16 |
15
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → 𝑓 Fn 𝑁 ) |
| 17 |
|
uspgruhgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UHGraph ) |
| 19 |
18
|
3ad2ant1 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐺 ∈ UHGraph ) |
| 20 |
2
|
eleq2i |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐼 ↔ { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
| 21 |
20
|
biimpi |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐼 → { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
| 22 |
21
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
| 23 |
22
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
| 24 |
9
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 25 |
|
uhgredgrnv |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 26 |
19 23 24 25
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 28 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 29 |
28
|
clnbgrvtxel |
⊢ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) → 𝐴 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 30 |
27 29
|
syl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → 𝐴 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 31 |
30 1
|
eleqtrrdi |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → 𝐴 ∈ 𝑁 ) |
| 32 |
|
prcom |
⊢ { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 } |
| 33 |
32
|
eleq1i |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐼 ↔ { 𝐵 , 𝐴 } ∈ 𝐼 ) |
| 34 |
33
|
biimpi |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐼 → { 𝐵 , 𝐴 } ∈ 𝐼 ) |
| 35 |
34
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → { 𝐵 , 𝐴 } ∈ 𝐼 ) |
| 36 |
35
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → { 𝐵 , 𝐴 } ∈ 𝐼 ) |
| 37 |
36
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → { 𝐵 , 𝐴 } ∈ 𝐼 ) |
| 38 |
37
|
olcd |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( 𝐵 = 𝐴 ∨ { 𝐵 , 𝐴 } ∈ 𝐼 ) ) |
| 39 |
|
uspgrupgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UPGraph ) |
| 41 |
40
|
3ad2ant1 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐺 ∈ UPGraph ) |
| 42 |
|
prid2g |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 43 |
42
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 44 |
43
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 45 |
|
uhgredgrnv |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
| 46 |
19 23 44 45
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
| 47 |
41 26 46
|
3jca |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 48 |
47
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 49 |
28 2
|
clnbupgrel |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐵 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ↔ ( 𝐵 = 𝐴 ∨ { 𝐵 , 𝐴 } ∈ 𝐼 ) ) ) |
| 50 |
48 49
|
syl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( 𝐵 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ↔ ( 𝐵 = 𝐴 ∨ { 𝐵 , 𝐴 } ∈ 𝐼 ) ) ) |
| 51 |
38 50
|
mpbird |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → 𝐵 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 52 |
51 1
|
eleqtrrdi |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → 𝐵 ∈ 𝑁 ) |
| 53 |
|
fnimapr |
⊢ ( ( 𝑓 Fn 𝑁 ∧ 𝐴 ∈ 𝑁 ∧ 𝐵 ∈ 𝑁 ) → ( 𝑓 “ { 𝐴 , 𝐵 } ) = { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ) |
| 54 |
16 31 52 53
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( 𝑓 “ { 𝐴 , 𝐵 } ) = { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ) |
| 55 |
54
|
eqeq1d |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ↔ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) |
| 56 |
55
|
biimpd |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) → { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) |
| 57 |
56
|
a1d |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 → ( ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) → { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) ) |
| 58 |
57
|
ex |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 → ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 → ( ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) → { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) ) ) |
| 59 |
58
|
3imp2 |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) |
| 60 |
13 14 59
|
3jca |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) |
| 61 |
60
|
ex |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) ) |
| 62 |
61
|
2eximdv |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) ) |
| 63 |
12 62
|
mpd |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) |