Metamath Proof Explorer


Theorem grlimprclnbgr

Description: For two locally isomorphic graphs G and H and a vertex A of G there are two bijections f and g mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) and the edges between the vertices in N onto the edges between the vertices in M , so that the mapped vertices of an edge { A , B } containing the vertex A is an edge between the vertices in M . (Contributed by AV, 25-Dec-2025)

Ref Expression
Hypotheses clnbgrvtxedg.n 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 )
clnbgrvtxedg.i 𝐼 = ( Edg ‘ 𝐺 )
clnbgrvtxedg.k 𝐾 = { 𝑥𝐼𝑥𝑁 }
grlimedgclnbgr.m 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) )
grlimedgclnbgr.j 𝐽 = ( Edg ‘ 𝐻 )
grlimedgclnbgr.l 𝐿 = { 𝑥𝐽𝑥𝑀 }
Assertion grlimprclnbgr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓𝑔 ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) )

Proof

Step Hyp Ref Expression
1 clnbgrvtxedg.n 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 )
2 clnbgrvtxedg.i 𝐼 = ( Edg ‘ 𝐺 )
3 clnbgrvtxedg.k 𝐾 = { 𝑥𝐼𝑥𝑁 }
4 grlimedgclnbgr.m 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) )
5 grlimedgclnbgr.j 𝐽 = ( Edg ‘ 𝐻 )
6 grlimedgclnbgr.l 𝐿 = { 𝑥𝐽𝑥𝑀 }
7 simp3 ( ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → { 𝐴 , 𝐵 } ∈ 𝐼 )
8 prid1g ( 𝐴𝑉𝐴 ∈ { 𝐴 , 𝐵 } )
9 8 3ad2ant1 ( ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → 𝐴 ∈ { 𝐴 , 𝐵 } )
10 7 9 jca ( ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → ( { 𝐴 , 𝐵 } ∈ 𝐼𝐴 ∈ { 𝐴 , 𝐵 } ) )
11 1 2 3 4 5 6 grlimedgclnbgr ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐼𝐴 ∈ { 𝐴 , 𝐵 } ) ) → ∃ 𝑓𝑔 ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) )
12 10 11 syl3an3 ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓𝑔 ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) )
13 simpr1 ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → 𝑓 : 𝑁1-1-onto𝑀 )
14 simpr2 ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → 𝑔 : 𝐾1-1-onto𝐿 )
15 f1ofn ( 𝑓 : 𝑁1-1-onto𝑀𝑓 Fn 𝑁 )
16 15 adantl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → 𝑓 Fn 𝑁 )
17 uspgruhgr ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph )
18 17 adantr ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UHGraph )
19 18 3ad2ant1 ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐺 ∈ UHGraph )
20 2 eleq2i ( { 𝐴 , 𝐵 } ∈ 𝐼 ↔ { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) )
21 20 biimpi ( { 𝐴 , 𝐵 } ∈ 𝐼 → { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) )
22 21 3ad2ant3 ( ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) )
23 22 3ad2ant3 ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) )
24 9 3ad2ant3 ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐴 ∈ { 𝐴 , 𝐵 } )
25 uhgredgrnv ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) )
26 19 23 24 25 syl3anc ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) )
27 26 adantr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) )
28 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
29 28 clnbgrvtxel ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) → 𝐴 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) )
30 27 29 syl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → 𝐴 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) )
31 30 1 eleqtrrdi ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → 𝐴𝑁 )
32 prcom { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 }
33 32 eleq1i ( { 𝐴 , 𝐵 } ∈ 𝐼 ↔ { 𝐵 , 𝐴 } ∈ 𝐼 )
34 33 biimpi ( { 𝐴 , 𝐵 } ∈ 𝐼 → { 𝐵 , 𝐴 } ∈ 𝐼 )
35 34 3ad2ant3 ( ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → { 𝐵 , 𝐴 } ∈ 𝐼 )
36 35 3ad2ant3 ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → { 𝐵 , 𝐴 } ∈ 𝐼 )
37 36 adantr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → { 𝐵 , 𝐴 } ∈ 𝐼 )
38 37 olcd ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → ( 𝐵 = 𝐴 ∨ { 𝐵 , 𝐴 } ∈ 𝐼 ) )
39 uspgrupgr ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph )
40 39 adantr ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UPGraph )
41 40 3ad2ant1 ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐺 ∈ UPGraph )
42 prid2g ( 𝐵𝑊𝐵 ∈ { 𝐴 , 𝐵 } )
43 42 3ad2ant2 ( ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → 𝐵 ∈ { 𝐴 , 𝐵 } )
44 43 3ad2ant3 ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐵 ∈ { 𝐴 , 𝐵 } )
45 uhgredgrnv ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) )
46 19 23 44 45 syl3anc ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) )
47 41 26 46 3jca ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) )
48 47 adantr ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) )
49 28 2 clnbupgrel ( ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐵 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ↔ ( 𝐵 = 𝐴 ∨ { 𝐵 , 𝐴 } ∈ 𝐼 ) ) )
50 48 49 syl ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → ( 𝐵 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ↔ ( 𝐵 = 𝐴 ∨ { 𝐵 , 𝐴 } ∈ 𝐼 ) ) )
51 38 50 mpbird ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → 𝐵 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) )
52 51 1 eleqtrrdi ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → 𝐵𝑁 )
53 fnimapr ( ( 𝑓 Fn 𝑁𝐴𝑁𝐵𝑁 ) → ( 𝑓 “ { 𝐴 , 𝐵 } ) = { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } )
54 16 31 52 53 syl3anc ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → ( 𝑓 “ { 𝐴 , 𝐵 } ) = { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } )
55 54 eqeq1d ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → ( ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ↔ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) )
56 55 biimpd ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → ( ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) → { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) )
57 56 a1d ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → ( 𝑔 : 𝐾1-1-onto𝐿 → ( ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) → { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) )
58 57 ex ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( 𝑓 : 𝑁1-1-onto𝑀 → ( 𝑔 : 𝐾1-1-onto𝐿 → ( ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) → { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) ) )
59 58 3imp2 ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) )
60 13 14 59 3jca ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) )
61 60 ex ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) )
62 61 2eximdv ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ∃ 𝑓𝑔 ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ ( 𝑓 “ { 𝐴 , 𝐵 } ) = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → ∃ 𝑓𝑔 ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) )
63 12 62 mpd ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓𝑔 ( 𝑓 : 𝑁1-1-onto𝑀𝑔 : 𝐾1-1-onto𝐿 ∧ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) )