Metamath Proof Explorer


Theorem grlimprclnbgr

Description: For two locally isomorphic graphs G and H and a vertex A of G there are two bijections f and g mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) and the edges between the vertices in N onto the edges between the vertices in M , so that the mapped vertices of an edge { A , B } containing the vertex A is an edge between the vertices in M . (Contributed by AV, 25-Dec-2025)

Ref Expression
Hypotheses clnbgrvtxedg.n N = G ClNeighbVtx A
clnbgrvtxedg.i I = Edg G
clnbgrvtxedg.k K = x I | x N
grlimedgclnbgr.m M = H ClNeighbVtx F A
grlimedgclnbgr.j J = Edg H
grlimedgclnbgr.l L = x J | x M
Assertion grlimprclnbgr G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f g f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B

Proof

Step Hyp Ref Expression
1 clnbgrvtxedg.n N = G ClNeighbVtx A
2 clnbgrvtxedg.i I = Edg G
3 clnbgrvtxedg.k K = x I | x N
4 grlimedgclnbgr.m M = H ClNeighbVtx F A
5 grlimedgclnbgr.j J = Edg H
6 grlimedgclnbgr.l L = x J | x M
7 simp3 A V B W A B I A B I
8 prid1g A V A A B
9 8 3ad2ant1 A V B W A B I A A B
10 7 9 jca A V B W A B I A B I A A B
11 1 2 3 4 5 6 grlimedgclnbgr G USHGraph H USHGraph F G GraphLocIso H A B I A A B f g f : N 1-1 onto M g : K 1-1 onto L f A B = g A B
12 10 11 syl3an3 G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f g f : N 1-1 onto M g : K 1-1 onto L f A B = g A B
13 simpr1 G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A B = g A B f : N 1-1 onto M
14 simpr2 G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A B = g A B g : K 1-1 onto L
15 f1ofn f : N 1-1 onto M f Fn N
16 15 adantl G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f Fn N
17 uspgruhgr G USHGraph G UHGraph
18 17 adantr G USHGraph H USHGraph G UHGraph
19 18 3ad2ant1 G USHGraph H USHGraph F G GraphLocIso H A V B W A B I G UHGraph
20 2 eleq2i A B I A B Edg G
21 20 biimpi A B I A B Edg G
22 21 3ad2ant3 A V B W A B I A B Edg G
23 22 3ad2ant3 G USHGraph H USHGraph F G GraphLocIso H A V B W A B I A B Edg G
24 9 3ad2ant3 G USHGraph H USHGraph F G GraphLocIso H A V B W A B I A A B
25 uhgredgrnv G UHGraph A B Edg G A A B A Vtx G
26 19 23 24 25 syl3anc G USHGraph H USHGraph F G GraphLocIso H A V B W A B I A Vtx G
27 26 adantr G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M A Vtx G
28 eqid Vtx G = Vtx G
29 28 clnbgrvtxel A Vtx G A G ClNeighbVtx A
30 27 29 syl G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M A G ClNeighbVtx A
31 30 1 eleqtrrdi G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M A N
32 prcom A B = B A
33 32 eleq1i A B I B A I
34 33 biimpi A B I B A I
35 34 3ad2ant3 A V B W A B I B A I
36 35 3ad2ant3 G USHGraph H USHGraph F G GraphLocIso H A V B W A B I B A I
37 36 adantr G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M B A I
38 37 olcd G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M B = A B A I
39 uspgrupgr G USHGraph G UPGraph
40 39 adantr G USHGraph H USHGraph G UPGraph
41 40 3ad2ant1 G USHGraph H USHGraph F G GraphLocIso H A V B W A B I G UPGraph
42 prid2g B W B A B
43 42 3ad2ant2 A V B W A B I B A B
44 43 3ad2ant3 G USHGraph H USHGraph F G GraphLocIso H A V B W A B I B A B
45 uhgredgrnv G UHGraph A B Edg G B A B B Vtx G
46 19 23 44 45 syl3anc G USHGraph H USHGraph F G GraphLocIso H A V B W A B I B Vtx G
47 41 26 46 3jca G USHGraph H USHGraph F G GraphLocIso H A V B W A B I G UPGraph A Vtx G B Vtx G
48 47 adantr G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M G UPGraph A Vtx G B Vtx G
49 28 2 clnbupgrel G UPGraph A Vtx G B Vtx G B G ClNeighbVtx A B = A B A I
50 48 49 syl G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M B G ClNeighbVtx A B = A B A I
51 38 50 mpbird G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M B G ClNeighbVtx A
52 51 1 eleqtrrdi G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M B N
53 fnimapr f Fn N A N B N f A B = f A f B
54 16 31 52 53 syl3anc G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A B = f A f B
55 54 eqeq1d G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A B = g A B f A f B = g A B
56 55 biimpd G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M f A B = g A B f A f B = g A B
57 56 a1d G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A B = g A B f A f B = g A B
58 57 ex G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A B = g A B f A f B = g A B
59 58 3imp2 G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A B = g A B f A f B = g A B
60 13 14 59 3jca G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A B = g A B f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B
61 60 ex G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A B = g A B f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B
62 61 2eximdv G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f g f : N 1-1 onto M g : K 1-1 onto L f A B = g A B f g f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B
63 12 62 mpd G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f g f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B