| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbgrvtxedg.n |
⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) |
| 2 |
|
clnbgrvtxedg.i |
⊢ 𝐼 = ( Edg ‘ 𝐺 ) |
| 3 |
|
clnbgrvtxedg.k |
⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } |
| 4 |
|
grlimedgclnbgr.m |
⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) |
| 5 |
|
grlimedgclnbgr.j |
⊢ 𝐽 = ( Edg ‘ 𝐻 ) |
| 6 |
|
grlimedgclnbgr.l |
⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } |
| 7 |
1 2 3 4 5 6
|
grlimprclnbgr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) |
| 8 |
|
simpr1 |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) |
| 9 |
|
f1of |
⊢ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 10 |
9
|
3ad2ant2 |
⊢ ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 11 |
10
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 12 |
|
uspgruhgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UHGraph ) |
| 14 |
13
|
3ad2ant1 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐺 ∈ UHGraph ) |
| 15 |
|
simp33 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → { 𝐴 , 𝐵 } ∈ 𝐼 ) |
| 16 |
|
prid1g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 17 |
16
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 18 |
17
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 19 |
14 15 18
|
3jca |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( 𝐺 ∈ UHGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) ) |
| 20 |
19
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → ( 𝐺 ∈ UHGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) ) |
| 21 |
1 2 3
|
clnbgrvtxedg |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) → { 𝐴 , 𝐵 } ∈ 𝐾 ) |
| 22 |
20 21
|
syl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → { 𝐴 , 𝐵 } ∈ 𝐾 ) |
| 23 |
11 22
|
ffvelcdmd |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ∈ 𝐿 ) |
| 24 |
|
eleq1 |
⊢ ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ↔ ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ∈ 𝐿 ) ) |
| 25 |
24
|
3ad2ant3 |
⊢ ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ↔ ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ∈ 𝐿 ) ) |
| 26 |
25
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ↔ ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ∈ 𝐿 ) ) |
| 27 |
23 26
|
mpbird |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) |
| 28 |
8 27
|
jca |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) |
| 29 |
28
|
ex |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ) |
| 30 |
29
|
exlimdv |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ) |
| 31 |
30
|
eximdv |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = ( 𝑔 ‘ { 𝐴 , 𝐵 } ) ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ) |
| 32 |
7 31
|
mpd |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) |