| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbgrvtxedg.n |
⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) |
| 2 |
|
clnbgrvtxedg.i |
⊢ 𝐼 = ( Edg ‘ 𝐺 ) |
| 3 |
|
clnbgrvtxedg.k |
⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } |
| 4 |
|
grlimedgclnbgr.m |
⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) |
| 5 |
|
grlimedgclnbgr.j |
⊢ 𝐽 = ( Edg ‘ 𝐻 ) |
| 6 |
|
grlimedgclnbgr.l |
⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } |
| 7 |
1 2 3 4 5 6
|
grlimprclnbgredg |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) |
| 8 |
|
sseq1 |
⊢ ( 𝑥 = { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } → ( 𝑥 ⊆ 𝑀 ↔ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) |
| 9 |
8 6
|
elrab2 |
⊢ ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ↔ ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) |
| 10 |
|
simpl |
⊢ ( ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) → { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) |
| 11 |
10
|
a1i |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) → { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ) |
| 12 |
9 11
|
biimtrid |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 → { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ) |
| 13 |
12
|
imdistanda |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ) ) |
| 14 |
13
|
eximdv |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ) ) |
| 15 |
7 14
|
mpd |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ) |