Metamath Proof Explorer


Theorem grlimpredg

Description: For two locally isomorphic graphs G and H and a vertex A of G there is a bijection f mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) , so that the mapped vertices of an edge { A , B } containing the vertex A is an edge in H . (Contributed by AV, 27-Dec-2025)

Ref Expression
Hypotheses clnbgrvtxedg.n 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 )
clnbgrvtxedg.i 𝐼 = ( Edg ‘ 𝐺 )
clnbgrvtxedg.k 𝐾 = { 𝑥𝐼𝑥𝑁 }
grlimedgclnbgr.m 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) )
grlimedgclnbgr.j 𝐽 = ( Edg ‘ 𝐻 )
grlimedgclnbgr.l 𝐿 = { 𝑥𝐽𝑥𝑀 }
Assertion grlimpredg ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ∈ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 clnbgrvtxedg.n 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 )
2 clnbgrvtxedg.i 𝐼 = ( Edg ‘ 𝐺 )
3 clnbgrvtxedg.k 𝐾 = { 𝑥𝐼𝑥𝑁 }
4 grlimedgclnbgr.m 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹𝐴 ) )
5 grlimedgclnbgr.j 𝐽 = ( Edg ‘ 𝐻 )
6 grlimedgclnbgr.l 𝐿 = { 𝑥𝐽𝑥𝑀 }
7 1 2 3 4 5 6 grlimprclnbgredg ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ∈ 𝐿 ) )
8 sseq1 ( 𝑥 = { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } → ( 𝑥𝑀 ↔ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ⊆ 𝑀 ) )
9 8 6 elrab2 ( { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ∈ 𝐿 ↔ ( { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ⊆ 𝑀 ) )
10 simpl ( ( { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ⊆ 𝑀 ) → { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ∈ 𝐽 )
11 10 a1i ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → ( ( { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ⊆ 𝑀 ) → { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ∈ 𝐽 ) )
12 9 11 biimtrid ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ 𝑓 : 𝑁1-1-onto𝑀 ) → ( { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ∈ 𝐿 → { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ∈ 𝐽 ) )
13 12 imdistanda ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ( 𝑓 : 𝑁1-1-onto𝑀 ∧ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ∈ 𝐿 ) → ( 𝑓 : 𝑁1-1-onto𝑀 ∧ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ∈ 𝐽 ) ) )
14 13 eximdv ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ∈ 𝐿 ) → ∃ 𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ∈ 𝐽 ) ) )
15 7 14 mpd ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴𝑉𝐵𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : 𝑁1-1-onto𝑀 ∧ { ( 𝑓𝐴 ) , ( 𝑓𝐵 ) } ∈ 𝐽 ) )