| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbgrvtxedg.n |
⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝐴 ) |
| 2 |
|
clnbgrvtxedg.i |
⊢ 𝐼 = ( Edg ‘ 𝐺 ) |
| 3 |
|
clnbgrvtxedg.k |
⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } |
| 4 |
|
grlimedgclnbgr.m |
⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) |
| 5 |
|
grlimedgclnbgr.j |
⊢ 𝐽 = ( Edg ‘ 𝐻 ) |
| 6 |
|
grlimedgclnbgr.l |
⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } |
| 7 |
1 2 3 4 5 6
|
grlimprclnbgredg |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) |
| 8 |
|
simprl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) → 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) |
| 9 |
|
sseq1 |
⊢ ( 𝑥 = { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } → ( 𝑥 ⊆ 𝑀 ↔ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) |
| 10 |
9 6
|
elrab2 |
⊢ ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ↔ ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) |
| 11 |
10
|
biimpi |
⊢ ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) |
| 13 |
12
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) |
| 14 |
|
fvex |
⊢ ( 𝑓 ‘ 𝐴 ) ∈ V |
| 15 |
|
fvex |
⊢ ( 𝑓 ‘ 𝐵 ) ∈ V |
| 16 |
14 15
|
prss |
⊢ ( ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ↔ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) |
| 17 |
|
uspgrupgr |
⊢ ( 𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐻 ∈ UPGraph ) |
| 19 |
18
|
3ad2ant1 |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → 𝐻 ∈ UPGraph ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) → 𝐻 ∈ UPGraph ) |
| 21 |
4
|
eleq2i |
⊢ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ↔ ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 22 |
5
|
clnbupgreli |
⊢ ( ( 𝐻 ∈ UPGraph ∧ ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( ( 𝑓 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) |
| 23 |
22
|
ex |
⊢ ( 𝐻 ∈ UPGraph → ( ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) → ( ( 𝑓 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) ) |
| 24 |
21 23
|
biimtrid |
⊢ ( 𝐻 ∈ UPGraph → ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 → ( ( 𝑓 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) ) |
| 25 |
4
|
eleq2i |
⊢ ( ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ↔ ( 𝑓 ‘ 𝐵 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 26 |
5
|
clnbupgreli |
⊢ ( ( 𝐻 ∈ UPGraph ∧ ( 𝑓 ‘ 𝐵 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) |
| 27 |
26
|
ex |
⊢ ( 𝐻 ∈ UPGraph → ( ( 𝑓 ‘ 𝐵 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) → ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) ) |
| 28 |
25 27
|
biimtrid |
⊢ ( 𝐻 ∈ UPGraph → ( ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 → ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) ) |
| 29 |
24 28
|
anim12d |
⊢ ( 𝐻 ∈ UPGraph → ( ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) → ( ( ( 𝑓 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) ) ) |
| 30 |
20 29
|
syl |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) → ( ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) → ( ( ( 𝑓 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) ) ) |
| 31 |
30
|
imp |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) → ( ( ( 𝑓 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) ) |
| 32 |
|
prcom |
⊢ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = { ( 𝑓 ‘ 𝐵 ) , ( 𝑓 ‘ 𝐴 ) } |
| 33 |
|
preq1 |
⊢ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) → { ( 𝑓 ‘ 𝐵 ) , ( 𝑓 ‘ 𝐴 ) } = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ) |
| 34 |
32 33
|
eqtrid |
⊢ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) → { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ) |
| 35 |
34
|
eleq1d |
⊢ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 36 |
35
|
biimpcd |
⊢ ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 → ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) → ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 38 |
37
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) → ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 39 |
38
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) → ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 40 |
|
prcom |
⊢ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } |
| 41 |
40
|
eleq1i |
⊢ ( { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) |
| 42 |
41
|
biimpi |
⊢ ( { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) |
| 43 |
42
|
adantl |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) |
| 44 |
20
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → 𝐻 ∈ UPGraph ) |
| 45 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
| 46 |
15 45
|
pm3.2i |
⊢ ( ( 𝑓 ‘ 𝐵 ) ∈ V ∧ ( 𝐹 ‘ 𝐴 ) ∈ V ) |
| 47 |
46
|
a1i |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( ( 𝑓 ‘ 𝐵 ) ∈ V ∧ ( 𝐹 ‘ 𝐴 ) ∈ V ) ) |
| 48 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) |
| 49 |
44 47 48
|
3jca |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( 𝐻 ∈ UPGraph ∧ ( ( 𝑓 ‘ 𝐵 ) ∈ V ∧ ( 𝐹 ‘ 𝐴 ) ∈ V ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) |
| 50 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
| 51 |
50 5
|
upgrpredgv |
⊢ ( ( 𝐻 ∈ UPGraph ∧ ( ( 𝑓 ‘ 𝐵 ) ∈ V ∧ ( 𝐹 ‘ 𝐴 ) ∈ V ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( ( 𝑓 ‘ 𝐵 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ ( Vtx ‘ 𝐻 ) ) ) |
| 52 |
|
simpr |
⊢ ( ( ( 𝑓 ‘ 𝐵 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ ( Vtx ‘ 𝐻 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 53 |
49 51 52
|
3syl |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 54 |
50
|
clnbgrvtxel |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( Vtx ‘ 𝐻 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 55 |
4
|
eleq2i |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑀 ↔ ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 56 |
54 55
|
sylibr |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( Vtx ‘ 𝐻 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑀 ) |
| 57 |
53 56
|
syl |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑀 ) |
| 58 |
|
simplrr |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) |
| 59 |
57 58
|
prssd |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) |
| 60 |
|
sseq1 |
⊢ ( 𝑥 = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } → ( 𝑥 ⊆ 𝑀 ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) |
| 61 |
60 6
|
elrab2 |
⊢ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ↔ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) ) |
| 62 |
43 59 61
|
sylanbrc |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) |
| 63 |
62
|
ex |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) → ( { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) |
| 64 |
39 63
|
orim12d |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) → ( ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ) |
| 65 |
64
|
imp |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) |
| 66 |
65
|
orcomd |
⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) ∧ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 67 |
66
|
ex |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) → ( ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) |
| 68 |
67
|
adantld |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) → ( ( ( ( 𝑓 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ∨ { ( 𝑓 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐴 ) } ∈ 𝐽 ) ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) |
| 69 |
31 68
|
mpd |
⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) ∧ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 70 |
69
|
ex |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) → ( ( ( 𝑓 ‘ 𝐴 ) ∈ 𝑀 ∧ ( 𝑓 ‘ 𝐵 ) ∈ 𝑀 ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) |
| 71 |
16 70
|
biimtrrid |
⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ) → ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) |
| 72 |
71
|
expimpd |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) → ( ( { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐽 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ 𝑀 ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) |
| 73 |
13 72
|
mpd |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) |
| 74 |
8 73
|
jca |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) ∧ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) |
| 75 |
74
|
ex |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) → ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) ) |
| 76 |
75
|
eximdv |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ { ( 𝑓 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) ) |
| 77 |
7 76
|
mpd |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐿 ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐿 ) ) ) |