| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbupgreli.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 2 |
|
simpr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) → 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) |
| 3 |
|
simpl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) → 𝐺 ∈ UPGraph ) |
| 4 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 5 |
4
|
clnbgrcl |
⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) → 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) → 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) |
| 7 |
4
|
clnbgrisvtx |
⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 9 |
4 1
|
clnbupgrel |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ ( 𝑁 = 𝐾 ∨ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) ) |
| 10 |
3 6 8 9
|
syl3anc |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) → ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ ( 𝑁 = 𝐾 ∨ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) ) |
| 11 |
2 10
|
mpbid |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ) → ( 𝑁 = 𝐾 ∨ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) |