| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbupgreli.e |
|- E = ( Edg ` G ) |
| 2 |
|
simpr |
|- ( ( G e. UPGraph /\ N e. ( G ClNeighbVtx K ) ) -> N e. ( G ClNeighbVtx K ) ) |
| 3 |
|
simpl |
|- ( ( G e. UPGraph /\ N e. ( G ClNeighbVtx K ) ) -> G e. UPGraph ) |
| 4 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 5 |
4
|
clnbgrcl |
|- ( N e. ( G ClNeighbVtx K ) -> K e. ( Vtx ` G ) ) |
| 6 |
5
|
adantl |
|- ( ( G e. UPGraph /\ N e. ( G ClNeighbVtx K ) ) -> K e. ( Vtx ` G ) ) |
| 7 |
4
|
clnbgrisvtx |
|- ( N e. ( G ClNeighbVtx K ) -> N e. ( Vtx ` G ) ) |
| 8 |
7
|
adantl |
|- ( ( G e. UPGraph /\ N e. ( G ClNeighbVtx K ) ) -> N e. ( Vtx ` G ) ) |
| 9 |
4 1
|
clnbupgrel |
|- ( ( G e. UPGraph /\ K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) -> ( N e. ( G ClNeighbVtx K ) <-> ( N = K \/ { N , K } e. E ) ) ) |
| 10 |
3 6 8 9
|
syl3anc |
|- ( ( G e. UPGraph /\ N e. ( G ClNeighbVtx K ) ) -> ( N e. ( G ClNeighbVtx K ) <-> ( N = K \/ { N , K } e. E ) ) ) |
| 11 |
2 10
|
mpbid |
|- ( ( G e. UPGraph /\ N e. ( G ClNeighbVtx K ) ) -> ( N = K \/ { N , K } e. E ) ) |