| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grlimgredgex.i |
⊢ 𝐼 = ( Edg ‘ 𝐺 ) |
| 2 |
|
grlimgredgex.e |
⊢ 𝐸 = ( Edg ‘ 𝐻 ) |
| 3 |
|
grlimgredgex.v |
⊢ 𝑉 = ( Vtx ‘ 𝐻 ) |
| 4 |
|
grlimgredgex.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 5 |
|
grlimgredgex.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) |
| 6 |
|
grlimgredgex.p |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝐼 ) |
| 7 |
|
grlimgredgex.g |
⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| 8 |
|
grlimgredgex.h |
⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) |
| 9 |
|
grlimgredgex.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) |
| 10 |
|
eqid |
⊢ ( 𝐺 ClNeighbVtx 𝐴 ) = ( 𝐺 ClNeighbVtx 𝐴 ) |
| 11 |
|
eqid |
⊢ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝐴 ) } |
| 12 |
|
eqid |
⊢ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) |
| 13 |
|
eqid |
⊢ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } = { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } |
| 14 |
10 1 11 12 2 13
|
grlimprclnbgrvtx |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ) ) |
| 15 |
7 8 9 4 5 6 14
|
syl213anc |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ) ) |
| 16 |
|
f1of |
⊢ ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) → 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) ⟶ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) ⟶ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 18 |
|
uspgrupgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) |
| 19 |
7 18
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) |
| 20 |
4 5
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) |
| 21 |
19 20 6
|
3jca |
⊢ ( 𝜑 → ( 𝐺 ∈ UPGraph ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) ) |
| 22 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 23 |
22 1
|
upgrpredgv |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 24 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
| 25 |
21 23 24
|
3syl |
⊢ ( 𝜑 → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
| 26 |
|
simpl |
⊢ ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 27 |
21 23 26
|
3syl |
⊢ ( 𝜑 → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 28 |
22 1
|
predgclnbgrel |
⊢ ( ( 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } ∈ 𝐼 ) → 𝐵 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 29 |
25 27 6 28
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → 𝐵 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 31 |
17 30
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝐵 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 32 |
3
|
clnbgrisvtx |
⊢ ( ( 𝑓 ‘ 𝐵 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) → ( 𝑓 ‘ 𝐵 ) ∈ 𝑉 ) |
| 33 |
31 32
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝐵 ) ∈ 𝑉 ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) → ( 𝑓 ‘ 𝐵 ) ∈ 𝑉 ) |
| 35 |
|
preq2 |
⊢ ( 𝑣 = ( 𝑓 ‘ 𝐵 ) → { ( 𝐹 ‘ 𝐴 ) , 𝑣 } = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ) |
| 36 |
35
|
eleq1d |
⊢ ( 𝑣 = ( 𝑓 ‘ 𝐵 ) → ( { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐸 ) ) |
| 37 |
36
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ∧ 𝑣 = ( 𝑓 ‘ 𝐵 ) ) → ( { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐸 ) ) |
| 38 |
|
sseq1 |
⊢ ( 𝑥 = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } → ( 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 39 |
38
|
elrab |
⊢ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ↔ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 40 |
39
|
simplbi |
⊢ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐸 ) |
| 41 |
40
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ 𝐸 ) |
| 42 |
34 37 41
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) |
| 43 |
42
|
ex |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) ) |
| 44 |
22
|
clnbgrvtxel |
⊢ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) → 𝐴 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 45 |
27 44
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → 𝐴 ∈ ( 𝐺 ClNeighbVtx 𝐴 ) ) |
| 47 |
17 46
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) |
| 48 |
3
|
clnbgrisvtx |
⊢ ( ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) → ( 𝑓 ‘ 𝐴 ) ∈ 𝑉 ) |
| 49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝐴 ) ∈ 𝑉 ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) → ( 𝑓 ‘ 𝐴 ) ∈ 𝑉 ) |
| 51 |
|
preq2 |
⊢ ( 𝑣 = ( 𝑓 ‘ 𝐴 ) → { ( 𝐹 ‘ 𝐴 ) , 𝑣 } = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ) |
| 52 |
51
|
eleq1d |
⊢ ( 𝑣 = ( 𝑓 ‘ 𝐴 ) → ( { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐸 ) ) |
| 53 |
52
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ∧ 𝑣 = ( 𝑓 ‘ 𝐴 ) ) → ( { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐸 ) ) |
| 54 |
|
sseq1 |
⊢ ( 𝑥 = { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } → ( 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ↔ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 55 |
54
|
elrab |
⊢ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ↔ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 56 |
55
|
simplbi |
⊢ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐸 ) |
| 57 |
56
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) → { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ 𝐸 ) |
| 58 |
50 53 57
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) ∧ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) |
| 59 |
58
|
ex |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) ) |
| 60 |
43 59
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ) → ( ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) ) |
| 61 |
60
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ) → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) ) |
| 62 |
61
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝐴 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) ∧ ( { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐵 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ∨ { ( 𝐹 ‘ 𝐴 ) , ( 𝑓 ‘ 𝐴 ) } ∈ { 𝑥 ∈ 𝐸 ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝐴 ) ) } ) ) → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) ) |
| 63 |
15 62
|
mpd |
⊢ ( 𝜑 → ∃ 𝑣 ∈ 𝑉 { ( 𝐹 ‘ 𝐴 ) , 𝑣 } ∈ 𝐸 ) |