Step |
Hyp |
Ref |
Expression |
1 |
|
grlimgrtrilem1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
grlimgrtrilem1.n |
⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑎 ) |
3 |
|
grlimgrtrilem1.i |
⊢ 𝐼 = ( Edg ‘ 𝐺 ) |
4 |
|
grlimgrtrilem1.k |
⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } |
5 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑎 , 𝑏 } ∈ 𝐼 ) |
6 |
|
simpl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → 𝐺 ∈ UHGraph ) |
7 |
|
vex |
⊢ 𝑎 ∈ V |
8 |
7
|
prid1 |
⊢ 𝑎 ∈ { 𝑎 , 𝑏 } |
9 |
8
|
a1i |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → 𝑎 ∈ { 𝑎 , 𝑏 } ) |
10 |
3 2
|
clnbgrssedg |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝑎 , 𝑏 } ∈ 𝐼 ∧ 𝑎 ∈ { 𝑎 , 𝑏 } ) → { 𝑎 , 𝑏 } ⊆ 𝑁 ) |
11 |
6 5 9 10
|
syl3anc |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑎 , 𝑏 } ⊆ 𝑁 ) |
12 |
5 11
|
jca |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑏 } ⊆ 𝑁 ) ) |
13 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑎 , 𝑐 } ∈ 𝐼 ) |
14 |
7
|
prid1 |
⊢ 𝑎 ∈ { 𝑎 , 𝑐 } |
15 |
14
|
a1i |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → 𝑎 ∈ { 𝑎 , 𝑐 } ) |
16 |
3 2
|
clnbgrssedg |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ 𝑎 ∈ { 𝑎 , 𝑐 } ) → { 𝑎 , 𝑐 } ⊆ 𝑁 ) |
17 |
6 13 15 16
|
syl3anc |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑎 , 𝑐 } ⊆ 𝑁 ) |
18 |
13 17
|
jca |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → ( { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ⊆ 𝑁 ) ) |
19 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑏 , 𝑐 } ∈ 𝐼 ) |
20 |
|
id |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐼 → { 𝑎 , 𝑏 } ∈ 𝐼 ) |
21 |
8
|
a1i |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐼 → 𝑎 ∈ { 𝑎 , 𝑏 } ) |
22 |
|
vex |
⊢ 𝑏 ∈ V |
23 |
22
|
prid2 |
⊢ 𝑏 ∈ { 𝑎 , 𝑏 } |
24 |
23
|
a1i |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐼 → 𝑏 ∈ { 𝑎 , 𝑏 } ) |
25 |
20 21 24
|
3jca |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐼 → ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ 𝑎 ∈ { 𝑎 , 𝑏 } ∧ 𝑏 ∈ { 𝑎 , 𝑏 } ) ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) → ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ 𝑎 ∈ { 𝑎 , 𝑏 } ∧ 𝑏 ∈ { 𝑎 , 𝑏 } ) ) |
27 |
3 2
|
clnbgredg |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ 𝑎 ∈ { 𝑎 , 𝑏 } ∧ 𝑏 ∈ { 𝑎 , 𝑏 } ) ) → 𝑏 ∈ 𝑁 ) |
28 |
26 27
|
sylan2 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → 𝑏 ∈ 𝑁 ) |
29 |
|
id |
⊢ ( { 𝑎 , 𝑐 } ∈ 𝐼 → { 𝑎 , 𝑐 } ∈ 𝐼 ) |
30 |
14
|
a1i |
⊢ ( { 𝑎 , 𝑐 } ∈ 𝐼 → 𝑎 ∈ { 𝑎 , 𝑐 } ) |
31 |
|
vex |
⊢ 𝑐 ∈ V |
32 |
31
|
prid2 |
⊢ 𝑐 ∈ { 𝑎 , 𝑐 } |
33 |
32
|
a1i |
⊢ ( { 𝑎 , 𝑐 } ∈ 𝐼 → 𝑐 ∈ { 𝑎 , 𝑐 } ) |
34 |
29 30 33
|
3jca |
⊢ ( { 𝑎 , 𝑐 } ∈ 𝐼 → ( { 𝑎 , 𝑐 } ∈ 𝐼 ∧ 𝑎 ∈ { 𝑎 , 𝑐 } ∧ 𝑐 ∈ { 𝑎 , 𝑐 } ) ) |
35 |
34
|
3ad2ant2 |
⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) → ( { 𝑎 , 𝑐 } ∈ 𝐼 ∧ 𝑎 ∈ { 𝑎 , 𝑐 } ∧ 𝑐 ∈ { 𝑎 , 𝑐 } ) ) |
36 |
3 2
|
clnbgredg |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑐 } ∈ 𝐼 ∧ 𝑎 ∈ { 𝑎 , 𝑐 } ∧ 𝑐 ∈ { 𝑎 , 𝑐 } ) ) → 𝑐 ∈ 𝑁 ) |
37 |
35 36
|
sylan2 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → 𝑐 ∈ 𝑁 ) |
38 |
28 37
|
prssd |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑏 , 𝑐 } ⊆ 𝑁 ) |
39 |
19 38
|
jca |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → ( { 𝑏 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ⊆ 𝑁 ) ) |
40 |
4
|
eleq2i |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐾 ↔ { 𝑎 , 𝑏 } ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } ) |
41 |
|
sseq1 |
⊢ ( 𝑥 = { 𝑎 , 𝑏 } → ( 𝑥 ⊆ 𝑁 ↔ { 𝑎 , 𝑏 } ⊆ 𝑁 ) ) |
42 |
41
|
elrab |
⊢ ( { 𝑎 , 𝑏 } ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } ↔ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑏 } ⊆ 𝑁 ) ) |
43 |
40 42
|
bitri |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐾 ↔ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑏 } ⊆ 𝑁 ) ) |
44 |
4
|
eleq2i |
⊢ ( { 𝑎 , 𝑐 } ∈ 𝐾 ↔ { 𝑎 , 𝑐 } ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } ) |
45 |
|
sseq1 |
⊢ ( 𝑥 = { 𝑎 , 𝑐 } → ( 𝑥 ⊆ 𝑁 ↔ { 𝑎 , 𝑐 } ⊆ 𝑁 ) ) |
46 |
45
|
elrab |
⊢ ( { 𝑎 , 𝑐 } ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } ↔ ( { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ⊆ 𝑁 ) ) |
47 |
44 46
|
bitri |
⊢ ( { 𝑎 , 𝑐 } ∈ 𝐾 ↔ ( { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ⊆ 𝑁 ) ) |
48 |
4
|
eleq2i |
⊢ ( { 𝑏 , 𝑐 } ∈ 𝐾 ↔ { 𝑏 , 𝑐 } ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } ) |
49 |
|
sseq1 |
⊢ ( 𝑥 = { 𝑏 , 𝑐 } → ( 𝑥 ⊆ 𝑁 ↔ { 𝑏 , 𝑐 } ⊆ 𝑁 ) ) |
50 |
49
|
elrab |
⊢ ( { 𝑏 , 𝑐 } ∈ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } ↔ ( { 𝑏 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ⊆ 𝑁 ) ) |
51 |
48 50
|
bitri |
⊢ ( { 𝑏 , 𝑐 } ∈ 𝐾 ↔ ( { 𝑏 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ⊆ 𝑁 ) ) |
52 |
43 47 51
|
3anbi123i |
⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐾 ∧ { 𝑎 , 𝑐 } ∈ 𝐾 ∧ { 𝑏 , 𝑐 } ∈ 𝐾 ) ↔ ( ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑏 } ⊆ 𝑁 ) ∧ ( { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ⊆ 𝑁 ) ∧ ( { 𝑏 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ⊆ 𝑁 ) ) ) |
53 |
12 18 39 52
|
syl3anbrc |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐾 ∧ { 𝑎 , 𝑐 } ∈ 𝐾 ∧ { 𝑏 , 𝑐 } ∈ 𝐾 ) ) |