Metamath Proof Explorer


Theorem grlimgrtrilem1

Description: Lemma 3 for grlimgrtri . (Contributed by AV, 24-Aug-2025)

Ref Expression
Hypotheses grlimgrtrilem1.v 𝑉 = ( Vtx ‘ 𝐺 )
grlimgrtrilem1.n 𝑁 = ( 𝐺 ClNeighbVtx 𝑎 )
grlimgrtrilem1.i 𝐼 = ( Edg ‘ 𝐺 )
grlimgrtrilem1.k 𝐾 = { 𝑥𝐼𝑥𝑁 }
Assertion grlimgrtrilem1 ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐾 ∧ { 𝑎 , 𝑐 } ∈ 𝐾 ∧ { 𝑏 , 𝑐 } ∈ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 grlimgrtrilem1.v 𝑉 = ( Vtx ‘ 𝐺 )
2 grlimgrtrilem1.n 𝑁 = ( 𝐺 ClNeighbVtx 𝑎 )
3 grlimgrtrilem1.i 𝐼 = ( Edg ‘ 𝐺 )
4 grlimgrtrilem1.k 𝐾 = { 𝑥𝐼𝑥𝑁 }
5 simpr1 ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑎 , 𝑏 } ∈ 𝐼 )
6 simpl ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → 𝐺 ∈ UHGraph )
7 vex 𝑎 ∈ V
8 7 prid1 𝑎 ∈ { 𝑎 , 𝑏 }
9 8 a1i ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → 𝑎 ∈ { 𝑎 , 𝑏 } )
10 3 2 clnbgrssedg ( ( 𝐺 ∈ UHGraph ∧ { 𝑎 , 𝑏 } ∈ 𝐼𝑎 ∈ { 𝑎 , 𝑏 } ) → { 𝑎 , 𝑏 } ⊆ 𝑁 )
11 6 5 9 10 syl3anc ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑎 , 𝑏 } ⊆ 𝑁 )
12 5 11 jca ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑏 } ⊆ 𝑁 ) )
13 simpr2 ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑎 , 𝑐 } ∈ 𝐼 )
14 7 prid1 𝑎 ∈ { 𝑎 , 𝑐 }
15 14 a1i ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → 𝑎 ∈ { 𝑎 , 𝑐 } )
16 3 2 clnbgrssedg ( ( 𝐺 ∈ UHGraph ∧ { 𝑎 , 𝑐 } ∈ 𝐼𝑎 ∈ { 𝑎 , 𝑐 } ) → { 𝑎 , 𝑐 } ⊆ 𝑁 )
17 6 13 15 16 syl3anc ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑎 , 𝑐 } ⊆ 𝑁 )
18 13 17 jca ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → ( { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ⊆ 𝑁 ) )
19 simpr3 ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑏 , 𝑐 } ∈ 𝐼 )
20 id ( { 𝑎 , 𝑏 } ∈ 𝐼 → { 𝑎 , 𝑏 } ∈ 𝐼 )
21 8 a1i ( { 𝑎 , 𝑏 } ∈ 𝐼𝑎 ∈ { 𝑎 , 𝑏 } )
22 vex 𝑏 ∈ V
23 22 prid2 𝑏 ∈ { 𝑎 , 𝑏 }
24 23 a1i ( { 𝑎 , 𝑏 } ∈ 𝐼𝑏 ∈ { 𝑎 , 𝑏 } )
25 20 21 24 3jca ( { 𝑎 , 𝑏 } ∈ 𝐼 → ( { 𝑎 , 𝑏 } ∈ 𝐼𝑎 ∈ { 𝑎 , 𝑏 } ∧ 𝑏 ∈ { 𝑎 , 𝑏 } ) )
26 25 3ad2ant1 ( ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) → ( { 𝑎 , 𝑏 } ∈ 𝐼𝑎 ∈ { 𝑎 , 𝑏 } ∧ 𝑏 ∈ { 𝑎 , 𝑏 } ) )
27 3 2 clnbgredg ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼𝑎 ∈ { 𝑎 , 𝑏 } ∧ 𝑏 ∈ { 𝑎 , 𝑏 } ) ) → 𝑏𝑁 )
28 26 27 sylan2 ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → 𝑏𝑁 )
29 id ( { 𝑎 , 𝑐 } ∈ 𝐼 → { 𝑎 , 𝑐 } ∈ 𝐼 )
30 14 a1i ( { 𝑎 , 𝑐 } ∈ 𝐼𝑎 ∈ { 𝑎 , 𝑐 } )
31 vex 𝑐 ∈ V
32 31 prid2 𝑐 ∈ { 𝑎 , 𝑐 }
33 32 a1i ( { 𝑎 , 𝑐 } ∈ 𝐼𝑐 ∈ { 𝑎 , 𝑐 } )
34 29 30 33 3jca ( { 𝑎 , 𝑐 } ∈ 𝐼 → ( { 𝑎 , 𝑐 } ∈ 𝐼𝑎 ∈ { 𝑎 , 𝑐 } ∧ 𝑐 ∈ { 𝑎 , 𝑐 } ) )
35 34 3ad2ant2 ( ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) → ( { 𝑎 , 𝑐 } ∈ 𝐼𝑎 ∈ { 𝑎 , 𝑐 } ∧ 𝑐 ∈ { 𝑎 , 𝑐 } ) )
36 3 2 clnbgredg ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑐 } ∈ 𝐼𝑎 ∈ { 𝑎 , 𝑐 } ∧ 𝑐 ∈ { 𝑎 , 𝑐 } ) ) → 𝑐𝑁 )
37 35 36 sylan2 ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → 𝑐𝑁 )
38 28 37 prssd ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → { 𝑏 , 𝑐 } ⊆ 𝑁 )
39 19 38 jca ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → ( { 𝑏 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ⊆ 𝑁 ) )
40 4 eleq2i ( { 𝑎 , 𝑏 } ∈ 𝐾 ↔ { 𝑎 , 𝑏 } ∈ { 𝑥𝐼𝑥𝑁 } )
41 sseq1 ( 𝑥 = { 𝑎 , 𝑏 } → ( 𝑥𝑁 ↔ { 𝑎 , 𝑏 } ⊆ 𝑁 ) )
42 41 elrab ( { 𝑎 , 𝑏 } ∈ { 𝑥𝐼𝑥𝑁 } ↔ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑏 } ⊆ 𝑁 ) )
43 40 42 bitri ( { 𝑎 , 𝑏 } ∈ 𝐾 ↔ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑏 } ⊆ 𝑁 ) )
44 4 eleq2i ( { 𝑎 , 𝑐 } ∈ 𝐾 ↔ { 𝑎 , 𝑐 } ∈ { 𝑥𝐼𝑥𝑁 } )
45 sseq1 ( 𝑥 = { 𝑎 , 𝑐 } → ( 𝑥𝑁 ↔ { 𝑎 , 𝑐 } ⊆ 𝑁 ) )
46 45 elrab ( { 𝑎 , 𝑐 } ∈ { 𝑥𝐼𝑥𝑁 } ↔ ( { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ⊆ 𝑁 ) )
47 44 46 bitri ( { 𝑎 , 𝑐 } ∈ 𝐾 ↔ ( { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ⊆ 𝑁 ) )
48 4 eleq2i ( { 𝑏 , 𝑐 } ∈ 𝐾 ↔ { 𝑏 , 𝑐 } ∈ { 𝑥𝐼𝑥𝑁 } )
49 sseq1 ( 𝑥 = { 𝑏 , 𝑐 } → ( 𝑥𝑁 ↔ { 𝑏 , 𝑐 } ⊆ 𝑁 ) )
50 49 elrab ( { 𝑏 , 𝑐 } ∈ { 𝑥𝐼𝑥𝑁 } ↔ ( { 𝑏 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ⊆ 𝑁 ) )
51 48 50 bitri ( { 𝑏 , 𝑐 } ∈ 𝐾 ↔ ( { 𝑏 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ⊆ 𝑁 ) )
52 43 47 51 3anbi123i ( ( { 𝑎 , 𝑏 } ∈ 𝐾 ∧ { 𝑎 , 𝑐 } ∈ 𝐾 ∧ { 𝑏 , 𝑐 } ∈ 𝐾 ) ↔ ( ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑏 } ⊆ 𝑁 ) ∧ ( { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ⊆ 𝑁 ) ∧ ( { 𝑏 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ⊆ 𝑁 ) ) )
53 12 18 39 52 syl3anbrc ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ 𝐼 ∧ { 𝑎 , 𝑐 } ∈ 𝐼 ∧ { 𝑏 , 𝑐 } ∈ 𝐼 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐾 ∧ { 𝑎 , 𝑐 } ∈ 𝐾 ∧ { 𝑏 , 𝑐 } ∈ 𝐾 ) )