Step |
Hyp |
Ref |
Expression |
1 |
|
grlimgrtri.g |
⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
2 |
|
grlimgrtri.h |
⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) |
3 |
|
grlimgrtri.n |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) |
4 |
|
grlimgrtri.t |
⊢ ( 𝜑 → 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ) |
5 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
6 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
7 |
5 6
|
grtriprop |
⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → ∃ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
9 |
1 2 3
|
3jca |
⊢ ( 𝜑 → ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) ) |
10 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
11 |
|
eqid |
⊢ ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx 𝑣 ) |
12 |
|
eqid |
⊢ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) |
13 |
|
eqid |
⊢ ( Edg ‘ 𝐻 ) = ( Edg ‘ 𝐻 ) |
14 |
|
sseq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ↔ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ) ) |
15 |
14
|
cbvrabv |
⊢ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = { 𝑥 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑥 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } |
16 |
|
sseq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ↔ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) |
17 |
16
|
cbvrabv |
⊢ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } = { 𝑥 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑥 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } |
18 |
5 10 11 12 6 13 15 17
|
usgrlimprop |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
19 |
|
eqidd |
⊢ ( 𝑣 = 𝑎 → 𝑓 = 𝑓 ) |
20 |
|
oveq2 |
⊢ ( 𝑣 = 𝑎 → ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx 𝑎 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑣 = 𝑎 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑎 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝑣 = 𝑎 → ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) |
23 |
19 20 22
|
f1oeq123d |
⊢ ( 𝑣 = 𝑎 → ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ↔ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ) |
24 |
|
eqidd |
⊢ ( 𝑣 = 𝑎 → 𝑔 = 𝑔 ) |
25 |
20
|
sseq2d |
⊢ ( 𝑣 = 𝑎 → ( 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) ↔ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
26 |
25
|
rabbidv |
⊢ ( 𝑣 = 𝑎 → { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } = { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) |
27 |
22
|
sseq2d |
⊢ ( 𝑣 = 𝑎 → ( 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ↔ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ) |
28 |
27
|
rabbidv |
⊢ ( 𝑣 = 𝑎 → { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } = { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) |
29 |
24 26 28
|
f1oeq123d |
⊢ ( 𝑣 = 𝑎 → ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ↔ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ) |
30 |
26
|
raleqdv |
⊢ ( 𝑣 = 𝑎 → ( ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) |
31 |
29 30
|
anbi12d |
⊢ ( 𝑣 = 𝑎 → ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ↔ ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) |
32 |
31
|
exbidv |
⊢ ( 𝑣 = 𝑎 → ( ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ↔ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) |
33 |
23 32
|
anbi12d |
⊢ ( 𝑣 = 𝑎 → ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
34 |
33
|
exbidv |
⊢ ( 𝑣 = 𝑎 → ( ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
35 |
34
|
rspcv |
⊢ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
36 |
35
|
3ad2ant1 |
⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
38 |
|
tpex |
⊢ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ V |
39 |
38
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ V ) |
40 |
|
f1of1 |
⊢ ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) → 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) |
41 |
40
|
3ad2ant2 |
⊢ ( ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) |
42 |
41
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) |
43 |
5
|
clnbgrvtxel |
⊢ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) → 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
44 |
43
|
3ad2ant1 |
⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
46 |
|
simplr |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) |
47 |
|
simpll |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑎 ∈ ( Vtx ‘ 𝐺 ) ) |
48 |
|
simpr |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) |
49 |
5 6
|
predgclnbgrel |
⊢ ( ( 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
50 |
46 47 48 49
|
syl3anc |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
51 |
50
|
2a1d |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → ( { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) |
52 |
51
|
ex |
⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) → ( { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → ( { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) ) |
53 |
52
|
3impd |
⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
54 |
53
|
3adant3 |
⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
55 |
54
|
imp |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
56 |
|
simplr |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) |
57 |
|
simpll |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑎 ∈ ( Vtx ‘ 𝐺 ) ) |
58 |
|
simpr |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) |
59 |
5 6
|
predgclnbgrel |
⊢ ( ( 𝑐 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
60 |
56 57 58 59
|
syl3anc |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
61 |
60
|
a1d |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
62 |
61
|
ex |
⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → ( { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) |
63 |
62
|
a1d |
⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) → ( { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → ( { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) ) |
64 |
63
|
3impd |
⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
65 |
64
|
3adant2 |
⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
66 |
65
|
imp |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) |
67 |
45 55 66
|
3jca |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
68 |
67
|
ex |
⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) |
69 |
68
|
2a1d |
⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → ( ( ♯ ‘ 𝑇 ) = 3 → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) ) ) |
70 |
69
|
3impd |
⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) |
71 |
70
|
a1d |
⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) ) |
72 |
71
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) ) ) |
73 |
72
|
3imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ) |
74 |
|
3simpa |
⊢ ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) |
75 |
74
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) |
76 |
73 75
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) |
77 |
|
grtrimap |
⊢ ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) → ( ( ( 𝑎 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑏 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ∧ 𝑐 ∈ ( 𝐺 ClNeighbVtx 𝑎 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) ) |
78 |
42 76 77
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) |
79 |
|
tpeq1 |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → { 𝑥 , 𝑦 , 𝑧 } = { ( 𝑓 ‘ 𝑎 ) , 𝑦 , 𝑧 } ) |
80 |
79
|
eqeq2d |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , 𝑦 , 𝑧 } ) ) |
81 |
|
preq1 |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → { 𝑥 , 𝑦 } = { ( 𝑓 ‘ 𝑎 ) , 𝑦 } ) |
82 |
81
|
eleq1d |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝑓 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ) ) |
83 |
|
preq1 |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → { 𝑥 , 𝑧 } = { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ) |
84 |
83
|
eleq1d |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → ( { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) |
85 |
82 84
|
3anbi12d |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → ( ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ↔ ( { ( 𝑓 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
86 |
80 85
|
3anbi13d |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑎 ) → ( ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { ( 𝑓 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
87 |
|
tpeq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → { ( 𝑓 ‘ 𝑎 ) , 𝑦 , 𝑧 } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , 𝑧 } ) |
88 |
87
|
eqeq2d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , 𝑦 , 𝑧 } ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , 𝑧 } ) ) |
89 |
|
preq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → { ( 𝑓 ‘ 𝑎 ) , 𝑦 } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) |
90 |
89
|
eleq1d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → ( { ( 𝑓 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
91 |
|
preq1 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → { 𝑦 , 𝑧 } = { ( 𝑓 ‘ 𝑏 ) , 𝑧 } ) |
92 |
91
|
eleq1d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → ( { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) |
93 |
90 92
|
3anbi13d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → ( ( { ( 𝑓 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ↔ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
94 |
88 93
|
3anbi13d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑏 ) → ( ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { ( 𝑓 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
95 |
|
tpeq3 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , 𝑧 } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) |
96 |
95
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , 𝑧 } ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) ) |
97 |
|
preq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → { ( 𝑓 ‘ 𝑎 ) , 𝑧 } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ) |
98 |
97
|
eleq1d |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → ( { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
99 |
|
preq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → { ( 𝑓 ‘ 𝑏 ) , 𝑧 } = { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) |
100 |
99
|
eleq1d |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → ( { ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
101 |
98 100
|
3anbi23d |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → ( ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ↔ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
102 |
96 101
|
3anbi13d |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑐 ) → ( ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
103 |
10
|
clnbgrisvtx |
⊢ ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) → ( 𝑓 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ) |
104 |
103
|
3ad2ant1 |
⊢ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) → ( 𝑓 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ) |
105 |
104
|
3ad2ant1 |
⊢ ( ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) → ( 𝑓 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ) |
106 |
105
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( 𝑓 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ) |
107 |
10
|
clnbgrisvtx |
⊢ ( ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) → ( 𝑓 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ) |
108 |
107
|
3ad2ant2 |
⊢ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) → ( 𝑓 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ) |
109 |
108
|
3ad2ant1 |
⊢ ( ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) → ( 𝑓 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ) |
110 |
109
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( 𝑓 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ) |
111 |
10
|
clnbgrisvtx |
⊢ ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) → ( 𝑓 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) |
112 |
111
|
3ad2ant3 |
⊢ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) → ( 𝑓 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) |
113 |
112
|
3ad2ant1 |
⊢ ( ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) → ( 𝑓 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) |
114 |
113
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( 𝑓 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) |
115 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) |
116 |
|
fveq2 |
⊢ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = ( 𝑓 “ 𝑇 ) → ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) ) |
117 |
116
|
eqcoms |
⊢ ( ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } → ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) ) |
118 |
117
|
3ad2ant2 |
⊢ ( ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) → ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) ) |
119 |
|
simp3 |
⊢ ( ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) → ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) |
120 |
118 119
|
eqtrd |
⊢ ( ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) → ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ) |
121 |
120
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ) |
122 |
|
uspgruhgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) |
123 |
1 122
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → 𝐺 ∈ UHGraph ) |
125 |
|
simp3 |
⊢ ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) |
126 |
124 125
|
anim12i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
127 |
126
|
3adant2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
128 |
127
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
129 |
|
eqid |
⊢ ( 𝐺 ClNeighbVtx 𝑎 ) = ( 𝐺 ClNeighbVtx 𝑎 ) |
130 |
|
eqid |
⊢ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } = { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } |
131 |
5 129 6 130
|
grlimgrtrilem1 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) ) |
132 |
128 131
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) ) |
133 |
|
eqid |
⊢ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) |
134 |
|
eqid |
⊢ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } = { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } |
135 |
5 129 6 130 133 13 134
|
grlimgrtrilem2 |
⊢ ( ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ∧ { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ) |
136 |
135
|
3expia |
⊢ ( ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) → ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
137 |
5 129 6 130 133 13 134
|
grlimgrtrilem2 |
⊢ ( ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) |
138 |
137
|
3expia |
⊢ ( ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) → ( { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
139 |
5 129 6 130 133 13 134
|
grlimgrtrilem2 |
⊢ ( ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) |
140 |
139
|
3expia |
⊢ ( ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) → ( { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } → { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
141 |
136 138 140
|
3anim123d |
⊢ ( ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ) ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) → ( ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
142 |
141
|
anasss |
⊢ ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ( ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
143 |
142
|
ancoms |
⊢ ( ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) → ( ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
144 |
143
|
3adant3 |
⊢ ( ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → ( ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
145 |
144
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
146 |
145
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( ( { 𝑎 , 𝑏 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑎 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ∧ { 𝑏 , 𝑐 } ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
147 |
132 146
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
148 |
115 121 147
|
3jca |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
149 |
86 94 102 106 110 114 148
|
3rspcedvdw |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ∧ ( ( ( 𝑓 ‘ 𝑎 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑏 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ) ∧ ( 𝑓 “ 𝑇 ) = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝑓 “ 𝑇 ) ) = 3 ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
150 |
78 149
|
mpdan |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
151 |
|
eqeq1 |
⊢ ( 𝑡 = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } → ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ) ) |
152 |
|
fveqeq2 |
⊢ ( 𝑡 = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } → ( ( ♯ ‘ 𝑡 ) = 3 ↔ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ) ) |
153 |
151 152
|
3anbi12d |
⊢ ( 𝑡 = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } → ( ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
154 |
153
|
rexbidv |
⊢ ( 𝑡 = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } → ( ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
155 |
154
|
2rexbidv |
⊢ ( 𝑡 = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } → ( ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) , ( 𝑓 ‘ 𝑐 ) } ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
156 |
39 150 155
|
spcedv |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
157 |
156
|
3exp |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ∧ 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) |
158 |
157
|
3expd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) → ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) ) |
159 |
158
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) → ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) ) |
160 |
159
|
impcomd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) |
161 |
160
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑎 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑎 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑎 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) |
162 |
37 161
|
syld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) |
163 |
162
|
com13 |
⊢ ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) → ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) |
164 |
163
|
imp |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓 ( 𝑓 : ( 𝐺 ClNeighbVtx 𝑣 ) –1-1-onto→ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ∧ ∃ 𝑔 ( 𝑔 : { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } –1-1-onto→ { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑦 ⊆ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) } ∧ ∀ 𝑖 ∈ { 𝑦 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑦 ⊆ ( 𝐺 ClNeighbVtx 𝑣 ) } ( 𝑓 “ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) ) ) → ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) |
165 |
9 18 164
|
3syl |
⊢ ( 𝜑 → ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) |
166 |
165
|
anabsi5 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
167 |
166
|
rexlimdvvva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
168 |
8 167
|
mpd |
⊢ ( 𝜑 → ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
169 |
10 13
|
isgrtri |
⊢ ( 𝑡 ∈ ( GrTriangles ‘ 𝐻 ) ↔ ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
170 |
169
|
exbii |
⊢ ( ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐻 ) ↔ ∃ 𝑡 ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( 𝑡 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
171 |
168 170
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐻 ) ) |