Metamath Proof Explorer


Theorem grlimgrtri

Description: Local isomorphisms between simple pseudographs map triangles onto triangles. (Contributed by AV, 24-Aug-2025)

Ref Expression
Hypotheses grlimgrtri.g φ G USHGraph
grlimgrtri.h φ H USHGraph
grlimgrtri.n φ F G GraphLocIso H
grlimgrtri.t No typesetting found for |- ( ph -> T e. ( GrTriangles ` G ) ) with typecode |-
Assertion grlimgrtri Could not format assertion : No typesetting found for |- ( ph -> E. t t e. ( GrTriangles ` H ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 grlimgrtri.g φ G USHGraph
2 grlimgrtri.h φ H USHGraph
3 grlimgrtri.n φ F G GraphLocIso H
4 grlimgrtri.t Could not format ( ph -> T e. ( GrTriangles ` G ) ) : No typesetting found for |- ( ph -> T e. ( GrTriangles ` G ) ) with typecode |-
5 eqid Vtx G = Vtx G
6 eqid Edg G = Edg G
7 5 6 grtriprop Could not format ( T e. ( GrTriangles ` G ) -> E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) with typecode |-
8 4 7 syl φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G
9 1 2 3 3jca φ G USHGraph H USHGraph F G GraphLocIso H
10 eqid Vtx H = Vtx H
11 eqid G ClNeighbVtx v = G ClNeighbVtx v
12 eqid H ClNeighbVtx F v = H ClNeighbVtx F v
13 eqid Edg H = Edg H
14 sseq1 y = x y G ClNeighbVtx v x G ClNeighbVtx v
15 14 cbvrabv y Edg G | y G ClNeighbVtx v = x Edg G | x G ClNeighbVtx v
16 sseq1 y = x y H ClNeighbVtx F v x H ClNeighbVtx F v
17 16 cbvrabv y Edg H | y H ClNeighbVtx F v = x Edg H | x H ClNeighbVtx F v
18 5 10 11 12 6 13 15 17 usgrlimprop G USHGraph H USHGraph F G GraphLocIso H F : Vtx G 1-1 onto Vtx H v Vtx G f f : G ClNeighbVtx v 1-1 onto H ClNeighbVtx F v g g : y Edg G | y G ClNeighbVtx v 1-1 onto y Edg H | y H ClNeighbVtx F v i y Edg G | y G ClNeighbVtx v f i = g i
19 eqidd v = a f = f
20 oveq2 v = a G ClNeighbVtx v = G ClNeighbVtx a
21 fveq2 v = a F v = F a
22 21 oveq2d v = a H ClNeighbVtx F v = H ClNeighbVtx F a
23 19 20 22 f1oeq123d v = a f : G ClNeighbVtx v 1-1 onto H ClNeighbVtx F v f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a
24 eqidd v = a g = g
25 20 sseq2d v = a y G ClNeighbVtx v y G ClNeighbVtx a
26 25 rabbidv v = a y Edg G | y G ClNeighbVtx v = y Edg G | y G ClNeighbVtx a
27 22 sseq2d v = a y H ClNeighbVtx F v y H ClNeighbVtx F a
28 27 rabbidv v = a y Edg H | y H ClNeighbVtx F v = y Edg H | y H ClNeighbVtx F a
29 24 26 28 f1oeq123d v = a g : y Edg G | y G ClNeighbVtx v 1-1 onto y Edg H | y H ClNeighbVtx F v g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a
30 26 raleqdv v = a i y Edg G | y G ClNeighbVtx v f i = g i i y Edg G | y G ClNeighbVtx a f i = g i
31 29 30 anbi12d v = a g : y Edg G | y G ClNeighbVtx v 1-1 onto y Edg H | y H ClNeighbVtx F v i y Edg G | y G ClNeighbVtx v f i = g i g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i
32 31 exbidv v = a g g : y Edg G | y G ClNeighbVtx v 1-1 onto y Edg H | y H ClNeighbVtx F v i y Edg G | y G ClNeighbVtx v f i = g i g g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i
33 23 32 anbi12d v = a f : G ClNeighbVtx v 1-1 onto H ClNeighbVtx F v g g : y Edg G | y G ClNeighbVtx v 1-1 onto y Edg H | y H ClNeighbVtx F v i y Edg G | y G ClNeighbVtx v f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a g g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i
34 33 exbidv v = a f f : G ClNeighbVtx v 1-1 onto H ClNeighbVtx F v g g : y Edg G | y G ClNeighbVtx v 1-1 onto y Edg H | y H ClNeighbVtx F v i y Edg G | y G ClNeighbVtx v f i = g i f f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a g g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i
35 34 rspcv a Vtx G v Vtx G f f : G ClNeighbVtx v 1-1 onto H ClNeighbVtx F v g g : y Edg G | y G ClNeighbVtx v 1-1 onto y Edg H | y H ClNeighbVtx F v i y Edg G | y G ClNeighbVtx v f i = g i f f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a g g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i
36 35 3ad2ant1 a Vtx G b Vtx G c Vtx G v Vtx G f f : G ClNeighbVtx v 1-1 onto H ClNeighbVtx F v g g : y Edg G | y G ClNeighbVtx v 1-1 onto y Edg H | y H ClNeighbVtx F v i y Edg G | y G ClNeighbVtx v f i = g i f f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a g g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i
37 36 adantl φ a Vtx G b Vtx G c Vtx G v Vtx G f f : G ClNeighbVtx v 1-1 onto H ClNeighbVtx F v g g : y Edg G | y G ClNeighbVtx v 1-1 onto y Edg H | y H ClNeighbVtx F v i y Edg G | y G ClNeighbVtx v f i = g i f f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a g g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i
38 tpex f a f b f c V
39 38 a1i φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G f a f b f c V
40 f1of1 f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a f : G ClNeighbVtx a 1-1 H ClNeighbVtx F a
41 40 3ad2ant2 g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H f : G ClNeighbVtx a 1-1 H ClNeighbVtx F a
42 41 3ad2ant2 φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G f : G ClNeighbVtx a 1-1 H ClNeighbVtx F a
43 5 clnbgrvtxel a Vtx G a G ClNeighbVtx a
44 43 3ad2ant1 a Vtx G b Vtx G c Vtx G a G ClNeighbVtx a
45 44 adantr a Vtx G b Vtx G c Vtx G a b Edg G a c Edg G b c Edg G a G ClNeighbVtx a
46 simplr a Vtx G b Vtx G a b Edg G b Vtx G
47 simpll a Vtx G b Vtx G a b Edg G a Vtx G
48 simpr a Vtx G b Vtx G a b Edg G a b Edg G
49 5 6 predgclnbgrel b Vtx G a Vtx G a b Edg G b G ClNeighbVtx a
50 46 47 48 49 syl3anc a Vtx G b Vtx G a b Edg G b G ClNeighbVtx a
51 50 2a1d a Vtx G b Vtx G a b Edg G a c Edg G b c Edg G b G ClNeighbVtx a
52 51 ex a Vtx G b Vtx G a b Edg G a c Edg G b c Edg G b G ClNeighbVtx a
53 52 3impd a Vtx G b Vtx G a b Edg G a c Edg G b c Edg G b G ClNeighbVtx a
54 53 3adant3 a Vtx G b Vtx G c Vtx G a b Edg G a c Edg G b c Edg G b G ClNeighbVtx a
55 54 imp a Vtx G b Vtx G c Vtx G a b Edg G a c Edg G b c Edg G b G ClNeighbVtx a
56 simplr a Vtx G c Vtx G a c Edg G c Vtx G
57 simpll a Vtx G c Vtx G a c Edg G a Vtx G
58 simpr a Vtx G c Vtx G a c Edg G a c Edg G
59 5 6 predgclnbgrel c Vtx G a Vtx G a c Edg G c G ClNeighbVtx a
60 56 57 58 59 syl3anc a Vtx G c Vtx G a c Edg G c G ClNeighbVtx a
61 60 a1d a Vtx G c Vtx G a c Edg G b c Edg G c G ClNeighbVtx a
62 61 ex a Vtx G c Vtx G a c Edg G b c Edg G c G ClNeighbVtx a
63 62 a1d a Vtx G c Vtx G a b Edg G a c Edg G b c Edg G c G ClNeighbVtx a
64 63 3impd a Vtx G c Vtx G a b Edg G a c Edg G b c Edg G c G ClNeighbVtx a
65 64 3adant2 a Vtx G b Vtx G c Vtx G a b Edg G a c Edg G b c Edg G c G ClNeighbVtx a
66 65 imp a Vtx G b Vtx G c Vtx G a b Edg G a c Edg G b c Edg G c G ClNeighbVtx a
67 45 55 66 3jca a Vtx G b Vtx G c Vtx G a b Edg G a c Edg G b c Edg G a G ClNeighbVtx a b G ClNeighbVtx a c G ClNeighbVtx a
68 67 ex a Vtx G b Vtx G c Vtx G a b Edg G a c Edg G b c Edg G a G ClNeighbVtx a b G ClNeighbVtx a c G ClNeighbVtx a
69 68 2a1d a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G a G ClNeighbVtx a b G ClNeighbVtx a c G ClNeighbVtx a
70 69 3impd a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G a G ClNeighbVtx a b G ClNeighbVtx a c G ClNeighbVtx a
71 70 a1d a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G a G ClNeighbVtx a b G ClNeighbVtx a c G ClNeighbVtx a
72 71 adantl φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G a G ClNeighbVtx a b G ClNeighbVtx a c G ClNeighbVtx a
73 72 3imp φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G a G ClNeighbVtx a b G ClNeighbVtx a c G ClNeighbVtx a
74 3simpa T = a b c T = 3 a b Edg G a c Edg G b c Edg G T = a b c T = 3
75 74 3ad2ant3 φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G T = a b c T = 3
76 73 75 jca φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G a G ClNeighbVtx a b G ClNeighbVtx a c G ClNeighbVtx a T = a b c T = 3
77 grtrimap f : G ClNeighbVtx a 1-1 H ClNeighbVtx F a a G ClNeighbVtx a b G ClNeighbVtx a c G ClNeighbVtx a T = a b c T = 3 f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3
78 42 76 77 sylc φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3
79 tpeq1 x = f a x y z = f a y z
80 79 eqeq2d x = f a f a f b f c = x y z f a f b f c = f a y z
81 preq1 x = f a x y = f a y
82 81 eleq1d x = f a x y Edg H f a y Edg H
83 preq1 x = f a x z = f a z
84 83 eleq1d x = f a x z Edg H f a z Edg H
85 82 84 3anbi12d x = f a x y Edg H x z Edg H y z Edg H f a y Edg H f a z Edg H y z Edg H
86 80 85 3anbi13d x = f a f a f b f c = x y z f a f b f c = 3 x y Edg H x z Edg H y z Edg H f a f b f c = f a y z f a f b f c = 3 f a y Edg H f a z Edg H y z Edg H
87 tpeq2 y = f b f a y z = f a f b z
88 87 eqeq2d y = f b f a f b f c = f a y z f a f b f c = f a f b z
89 preq2 y = f b f a y = f a f b
90 89 eleq1d y = f b f a y Edg H f a f b Edg H
91 preq1 y = f b y z = f b z
92 91 eleq1d y = f b y z Edg H f b z Edg H
93 90 92 3anbi13d y = f b f a y Edg H f a z Edg H y z Edg H f a f b Edg H f a z Edg H f b z Edg H
94 88 93 3anbi13d y = f b f a f b f c = f a y z f a f b f c = 3 f a y Edg H f a z Edg H y z Edg H f a f b f c = f a f b z f a f b f c = 3 f a f b Edg H f a z Edg H f b z Edg H
95 tpeq3 z = f c f a f b z = f a f b f c
96 95 eqeq2d z = f c f a f b f c = f a f b z f a f b f c = f a f b f c
97 preq2 z = f c f a z = f a f c
98 97 eleq1d z = f c f a z Edg H f a f c Edg H
99 preq2 z = f c f b z = f b f c
100 99 eleq1d z = f c f b z Edg H f b f c Edg H
101 98 100 3anbi23d z = f c f a f b Edg H f a z Edg H f b z Edg H f a f b Edg H f a f c Edg H f b f c Edg H
102 96 101 3anbi13d z = f c f a f b f c = f a f b z f a f b f c = 3 f a f b Edg H f a z Edg H f b z Edg H f a f b f c = f a f b f c f a f b f c = 3 f a f b Edg H f a f c Edg H f b f c Edg H
103 10 clnbgrisvtx f a H ClNeighbVtx F a f a Vtx H
104 103 3ad2ant1 f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f a Vtx H
105 104 3ad2ant1 f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 f a Vtx H
106 105 adantl φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 f a Vtx H
107 10 clnbgrisvtx f b H ClNeighbVtx F a f b Vtx H
108 107 3ad2ant2 f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f b Vtx H
109 108 3ad2ant1 f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 f b Vtx H
110 109 adantl φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 f b Vtx H
111 10 clnbgrisvtx f c H ClNeighbVtx F a f c Vtx H
112 111 3ad2ant3 f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f c Vtx H
113 112 3ad2ant1 f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 f c Vtx H
114 113 adantl φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 f c Vtx H
115 eqidd φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 f a f b f c = f a f b f c
116 fveq2 f a f b f c = f T f a f b f c = f T
117 116 eqcoms f T = f a f b f c f a f b f c = f T
118 117 3ad2ant2 f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 f a f b f c = f T
119 simp3 f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 f T = 3
120 118 119 eqtrd f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 f a f b f c = 3
121 120 adantl φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 f a f b f c = 3
122 uspgruhgr G USHGraph G UHGraph
123 1 122 syl φ G UHGraph
124 123 adantr φ a Vtx G b Vtx G c Vtx G G UHGraph
125 simp3 T = a b c T = 3 a b Edg G a c Edg G b c Edg G a b Edg G a c Edg G b c Edg G
126 124 125 anim12i φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G G UHGraph a b Edg G a c Edg G b c Edg G
127 126 3adant2 φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G G UHGraph a b Edg G a c Edg G b c Edg G
128 127 adantr φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 G UHGraph a b Edg G a c Edg G b c Edg G
129 eqid G ClNeighbVtx a = G ClNeighbVtx a
130 eqid y Edg G | y G ClNeighbVtx a = y Edg G | y G ClNeighbVtx a
131 5 129 6 130 grlimgrtrilem1 G UHGraph a b Edg G a c Edg G b c Edg G a b y Edg G | y G ClNeighbVtx a a c y Edg G | y G ClNeighbVtx a b c y Edg G | y G ClNeighbVtx a
132 128 131 syl φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 a b y Edg G | y G ClNeighbVtx a a c y Edg G | y G ClNeighbVtx a b c y Edg G | y G ClNeighbVtx a
133 eqid H ClNeighbVtx F a = H ClNeighbVtx F a
134 eqid y Edg H | y H ClNeighbVtx F a = y Edg H | y H ClNeighbVtx F a
135 5 129 6 130 133 13 134 grlimgrtrilem2 f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i a b y Edg G | y G ClNeighbVtx a f a f b Edg H
136 135 3expia f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i a b y Edg G | y G ClNeighbVtx a f a f b Edg H
137 5 129 6 130 133 13 134 grlimgrtrilem2 f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i a c y Edg G | y G ClNeighbVtx a f a f c Edg H
138 137 3expia f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i a c y Edg G | y G ClNeighbVtx a f a f c Edg H
139 5 129 6 130 133 13 134 grlimgrtrilem2 f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i b c y Edg G | y G ClNeighbVtx a f b f c Edg H
140 139 3expia f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i b c y Edg G | y G ClNeighbVtx a f b f c Edg H
141 136 138 140 3anim123d f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i a b y Edg G | y G ClNeighbVtx a a c y Edg G | y G ClNeighbVtx a b c y Edg G | y G ClNeighbVtx a f a f b Edg H f a f c Edg H f b f c Edg H
142 141 anasss f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i a b y Edg G | y G ClNeighbVtx a a c y Edg G | y G ClNeighbVtx a b c y Edg G | y G ClNeighbVtx a f a f b Edg H f a f c Edg H f b f c Edg H
143 142 ancoms g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a a b y Edg G | y G ClNeighbVtx a a c y Edg G | y G ClNeighbVtx a b c y Edg G | y G ClNeighbVtx a f a f b Edg H f a f c Edg H f b f c Edg H
144 143 3adant3 g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H a b y Edg G | y G ClNeighbVtx a a c y Edg G | y G ClNeighbVtx a b c y Edg G | y G ClNeighbVtx a f a f b Edg H f a f c Edg H f b f c Edg H
145 144 3ad2ant2 φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G a b y Edg G | y G ClNeighbVtx a a c y Edg G | y G ClNeighbVtx a b c y Edg G | y G ClNeighbVtx a f a f b Edg H f a f c Edg H f b f c Edg H
146 145 adantr φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 a b y Edg G | y G ClNeighbVtx a a c y Edg G | y G ClNeighbVtx a b c y Edg G | y G ClNeighbVtx a f a f b Edg H f a f c Edg H f b f c Edg H
147 132 146 mpd φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 f a f b Edg H f a f c Edg H f b f c Edg H
148 115 121 147 3jca φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 f a f b f c = f a f b f c f a f b f c = 3 f a f b Edg H f a f c Edg H f b f c Edg H
149 86 94 102 106 110 114 148 3rspcedvdw φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G f a H ClNeighbVtx F a f b H ClNeighbVtx F a f c H ClNeighbVtx F a f T = f a f b f c f T = 3 x Vtx H y Vtx H z Vtx H f a f b f c = x y z f a f b f c = 3 x y Edg H x z Edg H y z Edg H
150 78 149 mpdan φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G x Vtx H y Vtx H z Vtx H f a f b f c = x y z f a f b f c = 3 x y Edg H x z Edg H y z Edg H
151 eqeq1 t = f a f b f c t = x y z f a f b f c = x y z
152 fveqeq2 t = f a f b f c t = 3 f a f b f c = 3
153 151 152 3anbi12d t = f a f b f c t = x y z t = 3 x y Edg H x z Edg H y z Edg H f a f b f c = x y z f a f b f c = 3 x y Edg H x z Edg H y z Edg H
154 153 rexbidv t = f a f b f c z Vtx H t = x y z t = 3 x y Edg H x z Edg H y z Edg H z Vtx H f a f b f c = x y z f a f b f c = 3 x y Edg H x z Edg H y z Edg H
155 154 2rexbidv t = f a f b f c x Vtx H y Vtx H z Vtx H t = x y z t = 3 x y Edg H x z Edg H y z Edg H x Vtx H y Vtx H z Vtx H f a f b f c = x y z f a f b f c = 3 x y Edg H x z Edg H y z Edg H
156 39 150 155 spcedv φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G t x Vtx H y Vtx H z Vtx H t = x y z t = 3 x y Edg H x z Edg H y z Edg H
157 156 3exp φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G t x Vtx H y Vtx H z Vtx H t = x y z t = 3 x y Edg H x z Edg H y z Edg H
158 157 3expd φ a Vtx G b Vtx G c Vtx G g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G t x Vtx H y Vtx H z Vtx H t = x y z t = 3 x y Edg H x z Edg H y z Edg H
159 158 exlimdv φ a Vtx G b Vtx G c Vtx G g g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G t x Vtx H y Vtx H z Vtx H t = x y z t = 3 x y Edg H x z Edg H y z Edg H
160 159 impcomd φ a Vtx G b Vtx G c Vtx G f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a g g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G t x Vtx H y Vtx H z Vtx H t = x y z t = 3 x y Edg H x z Edg H y z Edg H
161 160 exlimdv φ a Vtx G b Vtx G c Vtx G f f : G ClNeighbVtx a 1-1 onto H ClNeighbVtx F a g g : y Edg G | y G ClNeighbVtx a 1-1 onto y Edg H | y H ClNeighbVtx F a i y Edg G | y G ClNeighbVtx a f i = g i F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G t x Vtx H y Vtx H z Vtx H t = x y z t = 3 x y Edg H x z Edg H y z Edg H
162 37 161 syld φ a Vtx G b Vtx G c Vtx G v Vtx G f f : G ClNeighbVtx v 1-1 onto H ClNeighbVtx F v g g : y Edg G | y G ClNeighbVtx v 1-1 onto y Edg H | y H ClNeighbVtx F v i y Edg G | y G ClNeighbVtx v f i = g i F : Vtx G 1-1 onto Vtx H T = a b c T = 3 a b Edg G a c Edg G b c Edg G t x Vtx H y Vtx H z Vtx H t = x y z t = 3 x y Edg H x z Edg H y z Edg H
163 162 com13 F : Vtx G 1-1 onto Vtx H v Vtx G f f : G ClNeighbVtx v 1-1 onto H ClNeighbVtx F v g g : y Edg G | y G ClNeighbVtx v 1-1 onto y Edg H | y H ClNeighbVtx F v i y Edg G | y G ClNeighbVtx v f i = g i φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G t x Vtx H y Vtx H z Vtx H t = x y z t = 3 x y Edg H x z Edg H y z Edg H
164 163 imp F : Vtx G 1-1 onto Vtx H v Vtx G f f : G ClNeighbVtx v 1-1 onto H ClNeighbVtx F v g g : y Edg G | y G ClNeighbVtx v 1-1 onto y Edg H | y H ClNeighbVtx F v i y Edg G | y G ClNeighbVtx v f i = g i φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G t x Vtx H y Vtx H z Vtx H t = x y z t = 3 x y Edg H x z Edg H y z Edg H
165 9 18 164 3syl φ φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G t x Vtx H y Vtx H z Vtx H t = x y z t = 3 x y Edg H x z Edg H y z Edg H
166 165 anabsi5 φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G t x Vtx H y Vtx H z Vtx H t = x y z t = 3 x y Edg H x z Edg H y z Edg H
167 166 rexlimdvvva φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G t x Vtx H y Vtx H z Vtx H t = x y z t = 3 x y Edg H x z Edg H y z Edg H
168 8 167 mpd φ t x Vtx H y Vtx H z Vtx H t = x y z t = 3 x y Edg H x z Edg H y z Edg H
169 10 13 isgrtri Could not format ( t e. ( GrTriangles ` H ) <-> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) : No typesetting found for |- ( t e. ( GrTriangles ` H ) <-> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) with typecode |-
170 169 exbii Could not format ( E. t t e. ( GrTriangles ` H ) <-> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) : No typesetting found for |- ( E. t t e. ( GrTriangles ` H ) <-> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) with typecode |-
171 168 170 sylibr Could not format ( ph -> E. t t e. ( GrTriangles ` H ) ) : No typesetting found for |- ( ph -> E. t t e. ( GrTriangles ` H ) ) with typecode |-