Step |
Hyp |
Ref |
Expression |
1 |
|
grlimgrtri.g |
|
2 |
|
grlimgrtri.h |
|
3 |
|
grlimgrtri.n |
|
4 |
|
grlimgrtri.t |
Could not format ( ph -> T e. ( GrTriangles ` G ) ) : No typesetting found for |- ( ph -> T e. ( GrTriangles ` G ) ) with typecode |- |
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
5 6
|
grtriprop |
Could not format ( T e. ( GrTriangles ` G ) -> E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) with typecode |- |
8 |
4 7
|
syl |
|
9 |
1 2 3
|
3jca |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
sseq1 |
|
15 |
14
|
cbvrabv |
|
16 |
|
sseq1 |
|
17 |
16
|
cbvrabv |
|
18 |
5 10 11 12 6 13 15 17
|
usgrlimprop |
|
19 |
|
eqidd |
|
20 |
|
oveq2 |
|
21 |
|
fveq2 |
|
22 |
21
|
oveq2d |
|
23 |
19 20 22
|
f1oeq123d |
|
24 |
|
eqidd |
|
25 |
20
|
sseq2d |
|
26 |
25
|
rabbidv |
|
27 |
22
|
sseq2d |
|
28 |
27
|
rabbidv |
|
29 |
24 26 28
|
f1oeq123d |
|
30 |
26
|
raleqdv |
|
31 |
29 30
|
anbi12d |
|
32 |
31
|
exbidv |
|
33 |
23 32
|
anbi12d |
|
34 |
33
|
exbidv |
|
35 |
34
|
rspcv |
|
36 |
35
|
3ad2ant1 |
|
37 |
36
|
adantl |
|
38 |
|
tpex |
|
39 |
38
|
a1i |
|
40 |
|
f1of1 |
|
41 |
40
|
3ad2ant2 |
|
42 |
41
|
3ad2ant2 |
|
43 |
5
|
clnbgrvtxel |
|
44 |
43
|
3ad2ant1 |
|
45 |
44
|
adantr |
|
46 |
|
simplr |
|
47 |
|
simpll |
|
48 |
|
simpr |
|
49 |
5 6
|
predgclnbgrel |
|
50 |
46 47 48 49
|
syl3anc |
|
51 |
50
|
2a1d |
|
52 |
51
|
ex |
|
53 |
52
|
3impd |
|
54 |
53
|
3adant3 |
|
55 |
54
|
imp |
|
56 |
|
simplr |
|
57 |
|
simpll |
|
58 |
|
simpr |
|
59 |
5 6
|
predgclnbgrel |
|
60 |
56 57 58 59
|
syl3anc |
|
61 |
60
|
a1d |
|
62 |
61
|
ex |
|
63 |
62
|
a1d |
|
64 |
63
|
3impd |
|
65 |
64
|
3adant2 |
|
66 |
65
|
imp |
|
67 |
45 55 66
|
3jca |
|
68 |
67
|
ex |
|
69 |
68
|
2a1d |
|
70 |
69
|
3impd |
|
71 |
70
|
a1d |
|
72 |
71
|
adantl |
|
73 |
72
|
3imp |
|
74 |
|
3simpa |
|
75 |
74
|
3ad2ant3 |
|
76 |
73 75
|
jca |
|
77 |
|
grtrimap |
|
78 |
42 76 77
|
sylc |
|
79 |
|
tpeq1 |
|
80 |
79
|
eqeq2d |
|
81 |
|
preq1 |
|
82 |
81
|
eleq1d |
|
83 |
|
preq1 |
|
84 |
83
|
eleq1d |
|
85 |
82 84
|
3anbi12d |
|
86 |
80 85
|
3anbi13d |
|
87 |
|
tpeq2 |
|
88 |
87
|
eqeq2d |
|
89 |
|
preq2 |
|
90 |
89
|
eleq1d |
|
91 |
|
preq1 |
|
92 |
91
|
eleq1d |
|
93 |
90 92
|
3anbi13d |
|
94 |
88 93
|
3anbi13d |
|
95 |
|
tpeq3 |
|
96 |
95
|
eqeq2d |
|
97 |
|
preq2 |
|
98 |
97
|
eleq1d |
|
99 |
|
preq2 |
|
100 |
99
|
eleq1d |
|
101 |
98 100
|
3anbi23d |
|
102 |
96 101
|
3anbi13d |
|
103 |
10
|
clnbgrisvtx |
|
104 |
103
|
3ad2ant1 |
|
105 |
104
|
3ad2ant1 |
|
106 |
105
|
adantl |
|
107 |
10
|
clnbgrisvtx |
|
108 |
107
|
3ad2ant2 |
|
109 |
108
|
3ad2ant1 |
|
110 |
109
|
adantl |
|
111 |
10
|
clnbgrisvtx |
|
112 |
111
|
3ad2ant3 |
|
113 |
112
|
3ad2ant1 |
|
114 |
113
|
adantl |
|
115 |
|
eqidd |
|
116 |
|
fveq2 |
|
117 |
116
|
eqcoms |
|
118 |
117
|
3ad2ant2 |
|
119 |
|
simp3 |
|
120 |
118 119
|
eqtrd |
|
121 |
120
|
adantl |
|
122 |
|
uspgruhgr |
|
123 |
1 122
|
syl |
|
124 |
123
|
adantr |
|
125 |
|
simp3 |
|
126 |
124 125
|
anim12i |
|
127 |
126
|
3adant2 |
|
128 |
127
|
adantr |
|
129 |
|
eqid |
|
130 |
|
eqid |
|
131 |
5 129 6 130
|
grlimgrtrilem1 |
|
132 |
128 131
|
syl |
|
133 |
|
eqid |
|
134 |
|
eqid |
|
135 |
5 129 6 130 133 13 134
|
grlimgrtrilem2 |
|
136 |
135
|
3expia |
|
137 |
5 129 6 130 133 13 134
|
grlimgrtrilem2 |
|
138 |
137
|
3expia |
|
139 |
5 129 6 130 133 13 134
|
grlimgrtrilem2 |
|
140 |
139
|
3expia |
|
141 |
136 138 140
|
3anim123d |
|
142 |
141
|
anasss |
|
143 |
142
|
ancoms |
|
144 |
143
|
3adant3 |
|
145 |
144
|
3ad2ant2 |
|
146 |
145
|
adantr |
|
147 |
132 146
|
mpd |
|
148 |
115 121 147
|
3jca |
|
149 |
86 94 102 106 110 114 148
|
3rspcedvdw |
|
150 |
78 149
|
mpdan |
|
151 |
|
eqeq1 |
|
152 |
|
fveqeq2 |
|
153 |
151 152
|
3anbi12d |
|
154 |
153
|
rexbidv |
|
155 |
154
|
2rexbidv |
|
156 |
39 150 155
|
spcedv |
|
157 |
156
|
3exp |
|
158 |
157
|
3expd |
|
159 |
158
|
exlimdv |
|
160 |
159
|
impcomd |
|
161 |
160
|
exlimdv |
|
162 |
37 161
|
syld |
|
163 |
162
|
com13 |
|
164 |
163
|
imp |
|
165 |
9 18 164
|
3syl |
|
166 |
165
|
anabsi5 |
|
167 |
166
|
rexlimdvvva |
|
168 |
8 167
|
mpd |
|
169 |
10 13
|
isgrtri |
Could not format ( t e. ( GrTriangles ` H ) <-> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) : No typesetting found for |- ( t e. ( GrTriangles ` H ) <-> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) with typecode |- |
170 |
169
|
exbii |
Could not format ( E. t t e. ( GrTriangles ` H ) <-> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) : No typesetting found for |- ( E. t t e. ( GrTriangles ` H ) <-> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) with typecode |- |
171 |
168 170
|
sylibr |
Could not format ( ph -> E. t t e. ( GrTriangles ` H ) ) : No typesetting found for |- ( ph -> E. t t e. ( GrTriangles ` H ) ) with typecode |- |