Metamath Proof Explorer


Theorem grlimgrtrilem2

Description: Lemma 3 for grlimgrtri . (Contributed by AV, 23-Aug-2025)

Ref Expression
Hypotheses grlimgrtrilem1.v V = Vtx G
grlimgrtrilem1.n N = G ClNeighbVtx a
grlimgrtrilem1.i I = Edg G
grlimgrtrilem1.k K = x I | x N
grlimgrtrilem2.m M = H ClNeighbVtx F a
grlimgrtrilem2.j J = Edg H
grlimgrtrilem2.l L = x J | x M
Assertion grlimgrtrilem2 f : N 1-1 onto M g : K 1-1 onto L i K f i = g i b c K f b f c J

Proof

Step Hyp Ref Expression
1 grlimgrtrilem1.v V = Vtx G
2 grlimgrtrilem1.n N = G ClNeighbVtx a
3 grlimgrtrilem1.i I = Edg G
4 grlimgrtrilem1.k K = x I | x N
5 grlimgrtrilem2.m M = H ClNeighbVtx F a
6 grlimgrtrilem2.j J = Edg H
7 grlimgrtrilem2.l L = x J | x M
8 imaeq2 i = b c f i = f b c
9 fveq2 i = b c g i = g b c
10 8 9 eqeq12d i = b c f i = g i f b c = g b c
11 10 rspcv b c K i K f i = g i f b c = g b c
12 f1ofn f : N 1-1 onto M f Fn N
13 12 adantr f : N 1-1 onto M g : K 1-1 onto L f Fn N
14 13 adantl b c K f : N 1-1 onto M g : K 1-1 onto L f Fn N
15 4 eleq2i b c K b c x I | x N
16 sseq1 x = b c x N b c N
17 16 elrab b c x I | x N b c I b c N
18 15 17 bitri b c K b c I b c N
19 vex b V
20 vex c V
21 19 20 prss b N c N b c N
22 simpl b N c N b N
23 21 22 sylbir b c N b N
24 18 23 simplbiim b c K b N
25 24 adantr b c K f : N 1-1 onto M g : K 1-1 onto L b N
26 simpr b N c N c N
27 21 26 sylbir b c N c N
28 18 27 simplbiim b c K c N
29 28 adantr b c K f : N 1-1 onto M g : K 1-1 onto L c N
30 fnimapr f Fn N b N c N f b c = f b f c
31 14 25 29 30 syl3anc b c K f : N 1-1 onto M g : K 1-1 onto L f b c = f b f c
32 31 eqeq1d b c K f : N 1-1 onto M g : K 1-1 onto L f b c = g b c f b f c = g b c
33 ssrab2 x J | x M J
34 7 33 eqsstri L J
35 f1of g : K 1-1 onto L g : K L
36 35 adantl f : N 1-1 onto M g : K 1-1 onto L g : K L
37 36 adantl b c K f : N 1-1 onto M g : K 1-1 onto L g : K L
38 simpl b c K f : N 1-1 onto M g : K 1-1 onto L b c K
39 37 38 ffvelcdmd b c K f : N 1-1 onto M g : K 1-1 onto L g b c L
40 34 39 sselid b c K f : N 1-1 onto M g : K 1-1 onto L g b c J
41 eleq1 f b f c = g b c f b f c J g b c J
42 40 41 syl5ibrcom b c K f : N 1-1 onto M g : K 1-1 onto L f b f c = g b c f b f c J
43 32 42 sylbid b c K f : N 1-1 onto M g : K 1-1 onto L f b c = g b c f b f c J
44 43 ex b c K f : N 1-1 onto M g : K 1-1 onto L f b c = g b c f b f c J
45 44 com23 b c K f b c = g b c f : N 1-1 onto M g : K 1-1 onto L f b f c J
46 11 45 syld b c K i K f i = g i f : N 1-1 onto M g : K 1-1 onto L f b f c J
47 46 3imp31 f : N 1-1 onto M g : K 1-1 onto L i K f i = g i b c K f b f c J