Step |
Hyp |
Ref |
Expression |
1 |
|
grlimgrtrilem1.v |
|
2 |
|
grlimgrtrilem1.n |
|
3 |
|
grlimgrtrilem1.i |
|
4 |
|
grlimgrtrilem1.k |
|
5 |
|
grlimgrtrilem2.m |
|
6 |
|
grlimgrtrilem2.j |
|
7 |
|
grlimgrtrilem2.l |
|
8 |
|
imaeq2 |
|
9 |
|
fveq2 |
|
10 |
8 9
|
eqeq12d |
|
11 |
10
|
rspcv |
|
12 |
|
f1ofn |
|
13 |
12
|
adantr |
|
14 |
13
|
adantl |
|
15 |
4
|
eleq2i |
|
16 |
|
sseq1 |
|
17 |
16
|
elrab |
|
18 |
15 17
|
bitri |
|
19 |
|
vex |
|
20 |
|
vex |
|
21 |
19 20
|
prss |
|
22 |
|
simpl |
|
23 |
21 22
|
sylbir |
|
24 |
18 23
|
simplbiim |
|
25 |
24
|
adantr |
|
26 |
|
simpr |
|
27 |
21 26
|
sylbir |
|
28 |
18 27
|
simplbiim |
|
29 |
28
|
adantr |
|
30 |
|
fnimapr |
|
31 |
14 25 29 30
|
syl3anc |
|
32 |
31
|
eqeq1d |
|
33 |
|
ssrab2 |
|
34 |
7 33
|
eqsstri |
|
35 |
|
f1of |
|
36 |
35
|
adantl |
|
37 |
36
|
adantl |
|
38 |
|
simpl |
|
39 |
37 38
|
ffvelcdmd |
|
40 |
34 39
|
sselid |
|
41 |
|
eleq1 |
|
42 |
40 41
|
syl5ibrcom |
|
43 |
32 42
|
sylbid |
|
44 |
43
|
ex |
|
45 |
44
|
com23 |
|
46 |
11 45
|
syld |
|
47 |
46
|
3imp31 |
|