Step |
Hyp |
Ref |
Expression |
1 |
|
grtri.v |
|
2 |
|
grtri.e |
|
3 |
|
elfvex |
Could not format ( T e. ( GrTriangles ` G ) -> G e. _V ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> G e. _V ) with typecode |- |
4 |
1 2
|
grtri |
Could not format ( G e. _V -> ( GrTriangles ` G ) = { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) : No typesetting found for |- ( G e. _V -> ( GrTriangles ` G ) = { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) with typecode |- |
5 |
3 4
|
syl |
Could not format ( T e. ( GrTriangles ` G ) -> ( GrTriangles ` G ) = { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> ( GrTriangles ` G ) = { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) with typecode |- |
6 |
5
|
eleq2d |
Could not format ( T e. ( GrTriangles ` G ) -> ( T e. ( GrTriangles ` G ) <-> T e. { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> ( T e. ( GrTriangles ` G ) <-> T e. { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) ) with typecode |- |
7 |
|
f1oeq3 |
|
8 |
7
|
anbi1d |
|
9 |
8
|
exbidv |
|
10 |
9
|
elrab |
|
11 |
6 10
|
bitrdi |
Could not format ( T e. ( GrTriangles ` G ) -> ( T e. ( GrTriangles ` G ) <-> ( T e. ~P V /\ E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> T /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) ) ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> ( T e. ( GrTriangles ` G ) <-> ( T e. ~P V /\ E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> T /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) ) ) ) with typecode |- |
12 |
|
ovexd |
|
13 |
|
simpr |
|
14 |
12 13
|
hasheqf1od |
|
15 |
|
eqcom |
|
16 |
|
3nn0 |
|
17 |
|
hashfzo0 |
|
18 |
16 17
|
mp1i |
|
19 |
18
|
eqeq2d |
|
20 |
15 19
|
bitrid |
|
21 |
|
hash3tpb |
|
22 |
21
|
adantr |
|
23 |
22
|
biimpa |
|
24 |
|
elpwi |
|
25 |
|
ss2rexv |
|
26 |
|
ssrexv |
|
27 |
26
|
reximdv |
|
28 |
27
|
reximdv |
|
29 |
25 28
|
syld |
|
30 |
24 29
|
syl |
|
31 |
30
|
adantr |
|
32 |
31
|
adantr |
|
33 |
|
simprr |
|
34 |
|
simp-5r |
|
35 |
|
f1oeq3 |
|
36 |
|
grtriproplem |
|
37 |
36
|
2a1d |
|
38 |
37
|
ex |
|
39 |
38
|
a1d |
|
40 |
35 39
|
biimtrdi |
|
41 |
40
|
adantld |
|
42 |
41
|
imp4c |
|
43 |
42
|
imp4c |
|
44 |
43
|
adantl |
|
45 |
44
|
impcom |
|
46 |
33 34 45
|
3jca |
|
47 |
46
|
ex |
|
48 |
47
|
reximdva |
|
49 |
48
|
reximdvva |
|
50 |
49
|
ex |
|
51 |
50
|
com23 |
|
52 |
32 51
|
syld |
|
53 |
23 52
|
mpd |
|
54 |
53
|
ex |
|
55 |
20 54
|
sylbid |
|
56 |
14 55
|
mpd |
|
57 |
56
|
expimpd |
|
58 |
57
|
exlimdv |
|
59 |
58
|
imp |
|
60 |
11 59
|
biimtrdi |
Could not format ( T e. ( GrTriangles ` G ) -> ( T e. ( GrTriangles ` G ) -> E. x e. V E. y e. V E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> ( T e. ( GrTriangles ` G ) -> E. x e. V E. y e. V E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) ) with typecode |- |
61 |
60
|
pm2.43i |
Could not format ( T e. ( GrTriangles ` G ) -> E. x e. V E. y e. V E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> E. x e. V E. y e. V E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) with typecode |- |