Metamath Proof Explorer


Theorem grtriprop

Description: The properties of a triangle. (Contributed by AV, 25-Jul-2025)

Ref Expression
Hypotheses grtri.v V = Vtx G
grtri.e E = Edg G
Assertion grtriprop Could not format assertion : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> E. x e. V E. y e. V E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 grtri.v V = Vtx G
2 grtri.e E = Edg G
3 elfvex Could not format ( T e. ( GrTriangles ` G ) -> G e. _V ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> G e. _V ) with typecode |-
4 1 2 grtri Could not format ( G e. _V -> ( GrTriangles ` G ) = { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) : No typesetting found for |- ( G e. _V -> ( GrTriangles ` G ) = { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) with typecode |-
5 3 4 syl Could not format ( T e. ( GrTriangles ` G ) -> ( GrTriangles ` G ) = { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> ( GrTriangles ` G ) = { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) with typecode |-
6 5 eleq2d Could not format ( T e. ( GrTriangles ` G ) -> ( T e. ( GrTriangles ` G ) <-> T e. { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> ( T e. ( GrTriangles ` G ) <-> T e. { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) ) with typecode |-
7 f1oeq3 t = T f : 0 ..^ 3 1-1 onto t f : 0 ..^ 3 1-1 onto T
8 7 anbi1d t = T f : 0 ..^ 3 1-1 onto t f 0 f 1 E f 0 f 2 E f 1 f 2 E f : 0 ..^ 3 1-1 onto T f 0 f 1 E f 0 f 2 E f 1 f 2 E
9 8 exbidv t = T f f : 0 ..^ 3 1-1 onto t f 0 f 1 E f 0 f 2 E f 1 f 2 E f f : 0 ..^ 3 1-1 onto T f 0 f 1 E f 0 f 2 E f 1 f 2 E
10 9 elrab T t 𝒫 V | f f : 0 ..^ 3 1-1 onto t f 0 f 1 E f 0 f 2 E f 1 f 2 E T 𝒫 V f f : 0 ..^ 3 1-1 onto T f 0 f 1 E f 0 f 2 E f 1 f 2 E
11 6 10 bitrdi Could not format ( T e. ( GrTriangles ` G ) -> ( T e. ( GrTriangles ` G ) <-> ( T e. ~P V /\ E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> T /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) ) ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> ( T e. ( GrTriangles ` G ) <-> ( T e. ~P V /\ E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> T /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) ) ) ) with typecode |-
12 ovexd T 𝒫 V f : 0 ..^ 3 1-1 onto T 0 ..^ 3 V
13 simpr T 𝒫 V f : 0 ..^ 3 1-1 onto T f : 0 ..^ 3 1-1 onto T
14 12 13 hasheqf1od T 𝒫 V f : 0 ..^ 3 1-1 onto T 0 ..^ 3 = T
15 eqcom 0 ..^ 3 = T T = 0 ..^ 3
16 3nn0 3 0
17 hashfzo0 3 0 0 ..^ 3 = 3
18 16 17 mp1i T 𝒫 V f : 0 ..^ 3 1-1 onto T 0 ..^ 3 = 3
19 18 eqeq2d T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 0 ..^ 3 T = 3
20 15 19 bitrid T 𝒫 V f : 0 ..^ 3 1-1 onto T 0 ..^ 3 = T T = 3
21 hash3tpb T 𝒫 V T = 3 x T y T z T x y x z y z T = x y z
22 21 adantr T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 x T y T z T x y x z y z T = x y z
23 22 biimpa T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 x T y T z T x y x z y z T = x y z
24 elpwi T 𝒫 V T V
25 ss2rexv T V x T y T z T x y x z y z T = x y z x V y V z T x y x z y z T = x y z
26 ssrexv T V z T x y x z y z T = x y z z V x y x z y z T = x y z
27 26 reximdv T V y V z T x y x z y z T = x y z y V z V x y x z y z T = x y z
28 27 reximdv T V x V y V z T x y x z y z T = x y z x V y V z V x y x z y z T = x y z
29 25 28 syld T V x T y T z T x y x z y z T = x y z x V y V z V x y x z y z T = x y z
30 24 29 syl T 𝒫 V x T y T z T x y x z y z T = x y z x V y V z V x y x z y z T = x y z
31 30 adantr T 𝒫 V f : 0 ..^ 3 1-1 onto T x T y T z T x y x z y z T = x y z x V y V z V x y x z y z T = x y z
32 31 adantr T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 x T y T z T x y x z y z T = x y z x V y V z V x y x z y z T = x y z
33 simprr T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y x z y z T = x y z T = x y z
34 simp-5r T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y x z y z T = x y z T = 3
35 f1oeq3 T = x y z f : 0 ..^ 3 1-1 onto T f : 0 ..^ 3 1-1 onto x y z
36 grtriproplem f : 0 ..^ 3 1-1 onto x y z f 0 f 1 E f 0 f 2 E f 1 f 2 E x y E x z E y z E
37 36 2a1d f : 0 ..^ 3 1-1 onto x y z f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y E x z E y z E
38 37 ex f : 0 ..^ 3 1-1 onto x y z f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y E x z E y z E
39 38 a1d f : 0 ..^ 3 1-1 onto x y z T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y E x z E y z E
40 35 39 biimtrdi T = x y z f : 0 ..^ 3 1-1 onto T T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y E x z E y z E
41 40 adantld T = x y z T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y E x z E y z E
42 41 imp4c T = x y z T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y E x z E y z E
43 42 imp4c T = x y z T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y E x z E y z E
44 43 adantl x y x z y z T = x y z T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y E x z E y z E
45 44 impcom T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y x z y z T = x y z x y E x z E y z E
46 33 34 45 3jca T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y x z y z T = x y z T = x y z T = 3 x y E x z E y z E
47 46 ex T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y x z y z T = x y z T = x y z T = 3 x y E x z E y z E
48 47 reximdva T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y x z y z T = x y z z V T = x y z T = 3 x y E x z E y z E
49 48 reximdvva T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y x z y z T = x y z x V y V z V T = x y z T = 3 x y E x z E y z E
50 49 ex T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V x y x z y z T = x y z x V y V z V T = x y z T = 3 x y E x z E y z E
51 50 com23 T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 x V y V z V x y x z y z T = x y z f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V T = x y z T = 3 x y E x z E y z E
52 32 51 syld T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 x T y T z T x y x z y z T = x y z f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V T = x y z T = 3 x y E x z E y z E
53 23 52 mpd T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V T = x y z T = 3 x y E x z E y z E
54 53 ex T 𝒫 V f : 0 ..^ 3 1-1 onto T T = 3 f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V T = x y z T = 3 x y E x z E y z E
55 20 54 sylbid T 𝒫 V f : 0 ..^ 3 1-1 onto T 0 ..^ 3 = T f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V T = x y z T = 3 x y E x z E y z E
56 14 55 mpd T 𝒫 V f : 0 ..^ 3 1-1 onto T f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V T = x y z T = 3 x y E x z E y z E
57 56 expimpd T 𝒫 V f : 0 ..^ 3 1-1 onto T f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V T = x y z T = 3 x y E x z E y z E
58 57 exlimdv T 𝒫 V f f : 0 ..^ 3 1-1 onto T f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V T = x y z T = 3 x y E x z E y z E
59 58 imp T 𝒫 V f f : 0 ..^ 3 1-1 onto T f 0 f 1 E f 0 f 2 E f 1 f 2 E x V y V z V T = x y z T = 3 x y E x z E y z E
60 11 59 biimtrdi Could not format ( T e. ( GrTriangles ` G ) -> ( T e. ( GrTriangles ` G ) -> E. x e. V E. y e. V E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> ( T e. ( GrTriangles ` G ) -> E. x e. V E. y e. V E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) ) with typecode |-
61 60 pm2.43i Could not format ( T e. ( GrTriangles ` G ) -> E. x e. V E. y e. V E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> E. x e. V E. y e. V E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) with typecode |-