Metamath Proof Explorer


Theorem grtrif1o

Description: Any bijection onto a triangle preserves the edges of the triangle. (Contributed by AV, 25-Jul-2025)

Ref Expression
Hypotheses grtri.v V = Vtx G
grtri.e E = Edg G
Assertion grtrif1o Could not format assertion : No typesetting found for |- ( ( T e. ( GrTriangles ` G ) /\ F : ( 0 ..^ 3 ) -1-1-onto-> T ) -> ( { ( F ` 0 ) , ( F ` 1 ) } e. E /\ { ( F ` 0 ) , ( F ` 2 ) } e. E /\ { ( F ` 1 ) , ( F ` 2 ) } e. E ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 grtri.v V = Vtx G
2 grtri.e E = Edg G
3 1 2 grtriprop Could not format ( T e. ( GrTriangles ` G ) -> E. x e. V E. y e. V E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> E. x e. V E. y e. V E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. E /\ { x , z } e. E /\ { y , z } e. E ) ) ) with typecode |-
4 f1oeq3 T = x y z F : 0 ..^ 3 1-1 onto T F : 0 ..^ 3 1-1 onto x y z
5 4 adantr T = x y z x y E x z E y z E F : 0 ..^ 3 1-1 onto T F : 0 ..^ 3 1-1 onto x y z
6 preq12 F 0 = x F 1 = y F 0 F 1 = x y
7 6 eleq1d F 0 = x F 1 = y F 0 F 1 E x y E
8 7 3adant3 F 0 = x F 1 = y F 2 = z F 0 F 1 E x y E
9 preq12 F 0 = x F 2 = z F 0 F 2 = x z
10 9 eleq1d F 0 = x F 2 = z F 0 F 2 E x z E
11 10 3adant2 F 0 = x F 1 = y F 2 = z F 0 F 2 E x z E
12 preq12 F 1 = y F 2 = z F 1 F 2 = y z
13 12 eleq1d F 1 = y F 2 = z F 1 F 2 E y z E
14 13 3adant1 F 0 = x F 1 = y F 2 = z F 1 F 2 E y z E
15 8 11 14 3anbi123d F 0 = x F 1 = y F 2 = z F 0 F 1 E F 0 F 2 E F 1 F 2 E x y E x z E y z E
16 15 biimprd F 0 = x F 1 = y F 2 = z x y E x z E y z E F 0 F 1 E F 0 F 2 E F 1 F 2 E
17 3ancoma x y E x z E y z E x z E x y E y z E
18 prcom y z = z y
19 18 eleq1i y z E z y E
20 19 3anbi3i x z E x y E y z E x z E x y E z y E
21 17 20 sylbb x y E x z E y z E x z E x y E z y E
22 preq12 F 0 = x F 1 = z F 0 F 1 = x z
23 22 eleq1d F 0 = x F 1 = z F 0 F 1 E x z E
24 23 3adant3 F 0 = x F 1 = z F 2 = y F 0 F 1 E x z E
25 preq12 F 0 = x F 2 = y F 0 F 2 = x y
26 25 eleq1d F 0 = x F 2 = y F 0 F 2 E x y E
27 26 3adant2 F 0 = x F 1 = z F 2 = y F 0 F 2 E x y E
28 preq12 F 1 = z F 2 = y F 1 F 2 = z y
29 28 eleq1d F 1 = z F 2 = y F 1 F 2 E z y E
30 29 3adant1 F 0 = x F 1 = z F 2 = y F 1 F 2 E z y E
31 24 27 30 3anbi123d F 0 = x F 1 = z F 2 = y F 0 F 1 E F 0 F 2 E F 1 F 2 E x z E x y E z y E
32 21 31 imbitrrid F 0 = x F 1 = z F 2 = y x y E x z E y z E F 0 F 1 E F 0 F 2 E F 1 F 2 E
33 16 32 jaoi F 0 = x F 1 = y F 2 = z F 0 = x F 1 = z F 2 = y x y E x z E y z E F 0 F 1 E F 0 F 2 E F 1 F 2 E
34 3ancomb x y E x z E y z E x y E y z E x z E
35 prcom x y = y x
36 35 eleq1i x y E y x E
37 36 3anbi1i x y E y z E x z E y x E y z E x z E
38 34 37 sylbb x y E x z E y z E y x E y z E x z E
39 preq12 F 0 = y F 1 = x F 0 F 1 = y x
40 39 eleq1d F 0 = y F 1 = x F 0 F 1 E y x E
41 40 3adant3 F 0 = y F 1 = x F 2 = z F 0 F 1 E y x E
42 preq12 F 0 = y F 2 = z F 0 F 2 = y z
43 42 eleq1d F 0 = y F 2 = z F 0 F 2 E y z E
44 43 3adant2 F 0 = y F 1 = x F 2 = z F 0 F 2 E y z E
45 preq12 F 1 = x F 2 = z F 1 F 2 = x z
46 45 eleq1d F 1 = x F 2 = z F 1 F 2 E x z E
47 46 3adant1 F 0 = y F 1 = x F 2 = z F 1 F 2 E x z E
48 41 44 47 3anbi123d F 0 = y F 1 = x F 2 = z F 0 F 1 E F 0 F 2 E F 1 F 2 E y x E y z E x z E
49 38 48 imbitrrid F 0 = y F 1 = x F 2 = z x y E x z E y z E F 0 F 1 E F 0 F 2 E F 1 F 2 E
50 3anrot y z E x y E x z E x y E x z E y z E
51 biid y z E y z E
52 prcom x z = z x
53 52 eleq1i x z E z x E
54 51 36 53 3anbi123i y z E x y E x z E y z E y x E z x E
55 50 54 sylbb1 x y E x z E y z E y z E y x E z x E
56 preq12 F 0 = y F 1 = z F 0 F 1 = y z
57 56 eleq1d F 0 = y F 1 = z F 0 F 1 E y z E
58 57 3adant3 F 0 = y F 1 = z F 2 = x F 0 F 1 E y z E
59 preq12 F 0 = y F 2 = x F 0 F 2 = y x
60 59 eleq1d F 0 = y F 2 = x F 0 F 2 E y x E
61 60 3adant2 F 0 = y F 1 = z F 2 = x F 0 F 2 E y x E
62 preq12 F 1 = z F 2 = x F 1 F 2 = z x
63 62 eleq1d F 1 = z F 2 = x F 1 F 2 E z x E
64 63 3adant1 F 0 = y F 1 = z F 2 = x F 1 F 2 E z x E
65 58 61 64 3anbi123d F 0 = y F 1 = z F 2 = x F 0 F 1 E F 0 F 2 E F 1 F 2 E y z E y x E z x E
66 55 65 imbitrrid F 0 = y F 1 = z F 2 = x x y E x z E y z E F 0 F 1 E F 0 F 2 E F 1 F 2 E
67 49 66 jaoi F 0 = y F 1 = x F 2 = z F 0 = y F 1 = z F 2 = x x y E x z E y z E F 0 F 1 E F 0 F 2 E F 1 F 2 E
68 3anrot x y E x z E y z E x z E y z E x y E
69 biid x y E x y E
70 53 19 69 3anbi123i x z E y z E x y E z x E z y E x y E
71 68 70 sylbb x y E x z E y z E z x E z y E x y E
72 preq12 F 0 = z F 1 = x F 0 F 1 = z x
73 72 eleq1d F 0 = z F 1 = x F 0 F 1 E z x E
74 73 3adant3 F 0 = z F 1 = x F 2 = y F 0 F 1 E z x E
75 preq12 F 0 = z F 2 = y F 0 F 2 = z y
76 75 eleq1d F 0 = z F 2 = y F 0 F 2 E z y E
77 76 3adant2 F 0 = z F 1 = x F 2 = y F 0 F 2 E z y E
78 preq12 F 1 = x F 2 = y F 1 F 2 = x y
79 78 eleq1d F 1 = x F 2 = y F 1 F 2 E x y E
80 79 3adant1 F 0 = z F 1 = x F 2 = y F 1 F 2 E x y E
81 74 77 80 3anbi123d F 0 = z F 1 = x F 2 = y F 0 F 1 E F 0 F 2 E F 1 F 2 E z x E z y E x y E
82 71 81 imbitrrid F 0 = z F 1 = x F 2 = y x y E x z E y z E F 0 F 1 E F 0 F 2 E F 1 F 2 E
83 3anrev x y E x z E y z E y z E x z E x y E
84 19 53 36 3anbi123i y z E x z E x y E z y E z x E y x E
85 83 84 sylbb x y E x z E y z E z y E z x E y x E
86 preq12 F 0 = z F 1 = y F 0 F 1 = z y
87 86 eleq1d F 0 = z F 1 = y F 0 F 1 E z y E
88 87 3adant3 F 0 = z F 1 = y F 2 = x F 0 F 1 E z y E
89 preq12 F 0 = z F 2 = x F 0 F 2 = z x
90 89 eleq1d F 0 = z F 2 = x F 0 F 2 E z x E
91 90 3adant2 F 0 = z F 1 = y F 2 = x F 0 F 2 E z x E
92 preq12 F 1 = y F 2 = x F 1 F 2 = y x
93 92 eleq1d F 1 = y F 2 = x F 1 F 2 E y x E
94 93 3adant1 F 0 = z F 1 = y F 2 = x F 1 F 2 E y x E
95 88 91 94 3anbi123d F 0 = z F 1 = y F 2 = x F 0 F 1 E F 0 F 2 E F 1 F 2 E z y E z x E y x E
96 85 95 imbitrrid F 0 = z F 1 = y F 2 = x x y E x z E y z E F 0 F 1 E F 0 F 2 E F 1 F 2 E
97 82 96 jaoi F 0 = z F 1 = x F 2 = y F 0 = z F 1 = y F 2 = x x y E x z E y z E F 0 F 1 E F 0 F 2 E F 1 F 2 E
98 33 67 97 3jaoi F 0 = x F 1 = y F 2 = z F 0 = x F 1 = z F 2 = y F 0 = y F 1 = x F 2 = z F 0 = y F 1 = z F 2 = x F 0 = z F 1 = x F 2 = y F 0 = z F 1 = y F 2 = x x y E x z E y z E F 0 F 1 E F 0 F 2 E F 1 F 2 E
99 f1of1 F : 0 ..^ 3 1-1 onto x y z F : 0 ..^ 3 1-1 x y z
100 fvf1tp F : 0 ..^ 3 1-1 x y z F 0 = x F 1 = y F 2 = z F 0 = x F 1 = z F 2 = y F 0 = y F 1 = x F 2 = z F 0 = y F 1 = z F 2 = x F 0 = z F 1 = x F 2 = y F 0 = z F 1 = y F 2 = x
101 99 100 syl F : 0 ..^ 3 1-1 onto x y z F 0 = x F 1 = y F 2 = z F 0 = x F 1 = z F 2 = y F 0 = y F 1 = x F 2 = z F 0 = y F 1 = z F 2 = x F 0 = z F 1 = x F 2 = y F 0 = z F 1 = y F 2 = x
102 98 101 syl11 x y E x z E y z E F : 0 ..^ 3 1-1 onto x y z F 0 F 1 E F 0 F 2 E F 1 F 2 E
103 102 adantl T = x y z x y E x z E y z E F : 0 ..^ 3 1-1 onto x y z F 0 F 1 E F 0 F 2 E F 1 F 2 E
104 5 103 sylbid T = x y z x y E x z E y z E F : 0 ..^ 3 1-1 onto T F 0 F 1 E F 0 F 2 E F 1 F 2 E
105 104 3adant2 T = x y z T = 3 x y E x z E y z E F : 0 ..^ 3 1-1 onto T F 0 F 1 E F 0 F 2 E F 1 F 2 E
106 105 a1i y V z V T = x y z T = 3 x y E x z E y z E F : 0 ..^ 3 1-1 onto T F 0 F 1 E F 0 F 2 E F 1 F 2 E
107 106 rexlimivv y V z V T = x y z T = 3 x y E x z E y z E F : 0 ..^ 3 1-1 onto T F 0 F 1 E F 0 F 2 E F 1 F 2 E
108 107 rexlimivw x V y V z V T = x y z T = 3 x y E x z E y z E F : 0 ..^ 3 1-1 onto T F 0 F 1 E F 0 F 2 E F 1 F 2 E
109 3 108 syl Could not format ( T e. ( GrTriangles ` G ) -> ( F : ( 0 ..^ 3 ) -1-1-onto-> T -> ( { ( F ` 0 ) , ( F ` 1 ) } e. E /\ { ( F ` 0 ) , ( F ` 2 ) } e. E /\ { ( F ` 1 ) , ( F ` 2 ) } e. E ) ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> ( F : ( 0 ..^ 3 ) -1-1-onto-> T -> ( { ( F ` 0 ) , ( F ` 1 ) } e. E /\ { ( F ` 0 ) , ( F ` 2 ) } e. E /\ { ( F ` 1 ) , ( F ` 2 ) } e. E ) ) ) with typecode |-
110 109 imp Could not format ( ( T e. ( GrTriangles ` G ) /\ F : ( 0 ..^ 3 ) -1-1-onto-> T ) -> ( { ( F ` 0 ) , ( F ` 1 ) } e. E /\ { ( F ` 0 ) , ( F ` 2 ) } e. E /\ { ( F ` 1 ) , ( F ` 2 ) } e. E ) ) : No typesetting found for |- ( ( T e. ( GrTriangles ` G ) /\ F : ( 0 ..^ 3 ) -1-1-onto-> T ) -> ( { ( F ` 0 ) , ( F ` 1 ) } e. E /\ { ( F ` 0 ) , ( F ` 2 ) } e. E /\ { ( F ` 1 ) , ( F ` 2 ) } e. E ) ) with typecode |-