Step |
Hyp |
Ref |
Expression |
1 |
|
grtri.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
grtri.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
grtriprop |
⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
4 |
|
f1oeq3 |
⊢ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ↔ 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ↔ 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } ) ) |
6 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑥 , 𝑦 } ) |
7 |
6
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
8 |
7
|
3adant3 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
9 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑥 , 𝑧 } ) |
10 |
9
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
11 |
10
|
3adant2 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
12 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑦 , 𝑧 } ) |
13 |
12
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
14 |
13
|
3adant1 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
15 |
8 11 14
|
3anbi123d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
16 |
15
|
biimprd |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
17 |
|
3ancoma |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
18 |
|
prcom |
⊢ { 𝑦 , 𝑧 } = { 𝑧 , 𝑦 } |
19 |
18
|
eleq1i |
⊢ ( { 𝑦 , 𝑧 } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) |
20 |
19
|
3anbi3i |
⊢ ( ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
21 |
17 20
|
sylbb |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
22 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑥 , 𝑧 } ) |
23 |
22
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
24 |
23
|
3adant3 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
25 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑥 , 𝑦 } ) |
26 |
25
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
27 |
26
|
3adant2 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
28 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑧 , 𝑦 } ) |
29 |
28
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
30 |
29
|
3adant1 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
31 |
24 27 30
|
3anbi123d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) ) |
32 |
21 31
|
imbitrrid |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
33 |
16 32
|
jaoi |
⊢ ( ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
34 |
|
3ancomb |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
35 |
|
prcom |
⊢ { 𝑥 , 𝑦 } = { 𝑦 , 𝑥 } |
36 |
35
|
eleq1i |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) |
37 |
36
|
3anbi1i |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
38 |
34 37
|
sylbb |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
39 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑦 , 𝑥 } ) |
40 |
39
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
41 |
40
|
3adant3 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
42 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑦 , 𝑧 } ) |
43 |
42
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
44 |
43
|
3adant2 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
45 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑥 , 𝑧 } ) |
46 |
45
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
47 |
46
|
3adant1 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
48 |
41 44 47
|
3anbi123d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) ) |
49 |
38 48
|
imbitrrid |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
50 |
|
3anrot |
⊢ ( ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
51 |
|
biid |
⊢ ( { 𝑦 , 𝑧 } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) |
52 |
|
prcom |
⊢ { 𝑥 , 𝑧 } = { 𝑧 , 𝑥 } |
53 |
52
|
eleq1i |
⊢ ( { 𝑥 , 𝑧 } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) |
54 |
51 36 53
|
3anbi123i |
⊢ ( ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
55 |
50 54
|
sylbb1 |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
56 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑦 , 𝑧 } ) |
57 |
56
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
58 |
57
|
3adant3 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
59 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑦 , 𝑥 } ) |
60 |
59
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
61 |
60
|
3adant2 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
62 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑧 , 𝑥 } ) |
63 |
62
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
64 |
63
|
3adant1 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
65 |
58 61 64
|
3anbi123d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) ) |
66 |
55 65
|
imbitrrid |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
67 |
49 66
|
jaoi |
⊢ ( ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
68 |
|
3anrot |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
69 |
|
biid |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) |
70 |
53 19 69
|
3anbi123i |
⊢ ( ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
71 |
68 70
|
sylbb |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
72 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑧 , 𝑥 } ) |
73 |
72
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
74 |
73
|
3adant3 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
75 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑧 , 𝑦 } ) |
76 |
75
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
77 |
76
|
3adant2 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
78 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑥 , 𝑦 } ) |
79 |
78
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
80 |
79
|
3adant1 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
81 |
74 77 80
|
3anbi123d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) ) |
82 |
71 81
|
imbitrrid |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
83 |
|
3anrev |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
84 |
19 53 36
|
3anbi123i |
⊢ ( ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
85 |
83 84
|
sylbb |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
86 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑧 , 𝑦 } ) |
87 |
86
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
88 |
87
|
3adant3 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
89 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑧 , 𝑥 } ) |
90 |
89
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
91 |
90
|
3adant2 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
92 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑦 , 𝑥 } ) |
93 |
92
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
94 |
93
|
3adant1 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
95 |
88 91 94
|
3anbi123d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) ) |
96 |
85 95
|
imbitrrid |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
97 |
82 96
|
jaoi |
⊢ ( ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
98 |
33 67 97
|
3jaoi |
⊢ ( ( ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
99 |
|
f1of1 |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑥 , 𝑦 , 𝑧 } ) |
100 |
|
fvf1tp |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑥 , 𝑦 , 𝑧 } → ( ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ) ) |
101 |
99 100
|
syl |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → ( ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ) ) |
102 |
98 101
|
syl11 |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
103 |
102
|
adantl |
⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
104 |
5 103
|
sylbid |
⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
105 |
104
|
3adant2 |
⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
106 |
105
|
a1i |
⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) ) |
107 |
106
|
rexlimivv |
⊢ ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
108 |
107
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
109 |
3 108
|
syl |
⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
110 |
109
|
imp |
⊢ ( ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ∧ 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) |