| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grtri.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
grtri.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
1 2
|
grtriprop |
⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 4 |
|
f1oeq3 |
⊢ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ↔ 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ↔ 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } ) ) |
| 6 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑥 , 𝑦 } ) |
| 7 |
6
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 8 |
7
|
3adant3 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 9 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑥 , 𝑧 } ) |
| 10 |
9
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 11 |
10
|
3adant2 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 12 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑦 , 𝑧 } ) |
| 13 |
12
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 14 |
13
|
3adant1 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 15 |
8 11 14
|
3anbi123d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 16 |
15
|
biimprd |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 17 |
|
3ancoma |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 18 |
|
prcom |
⊢ { 𝑦 , 𝑧 } = { 𝑧 , 𝑦 } |
| 19 |
18
|
eleq1i |
⊢ ( { 𝑦 , 𝑧 } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) |
| 20 |
19
|
3anbi3i |
⊢ ( ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 21 |
17 20
|
sylbb |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 22 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑥 , 𝑧 } ) |
| 23 |
22
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 24 |
23
|
3adant3 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 25 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑥 , 𝑦 } ) |
| 26 |
25
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 27 |
26
|
3adant2 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 28 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑧 , 𝑦 } ) |
| 29 |
28
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 30 |
29
|
3adant1 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 31 |
24 27 30
|
3anbi123d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) ) |
| 32 |
21 31
|
imbitrrid |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 33 |
16 32
|
jaoi |
⊢ ( ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 34 |
|
3ancomb |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 35 |
|
prcom |
⊢ { 𝑥 , 𝑦 } = { 𝑦 , 𝑥 } |
| 36 |
35
|
eleq1i |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) |
| 37 |
36
|
3anbi1i |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 38 |
34 37
|
sylbb |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 39 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑦 , 𝑥 } ) |
| 40 |
39
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 41 |
40
|
3adant3 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 42 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑦 , 𝑧 } ) |
| 43 |
42
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 44 |
43
|
3adant2 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 45 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑥 , 𝑧 } ) |
| 46 |
45
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 47 |
46
|
3adant1 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
| 48 |
41 44 47
|
3anbi123d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) ) |
| 49 |
38 48
|
imbitrrid |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 50 |
|
3anrot |
⊢ ( ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 51 |
|
biid |
⊢ ( { 𝑦 , 𝑧 } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) |
| 52 |
|
prcom |
⊢ { 𝑥 , 𝑧 } = { 𝑧 , 𝑥 } |
| 53 |
52
|
eleq1i |
⊢ ( { 𝑥 , 𝑧 } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) |
| 54 |
51 36 53
|
3anbi123i |
⊢ ( ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 55 |
50 54
|
sylbb1 |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 56 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑦 , 𝑧 } ) |
| 57 |
56
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 58 |
57
|
3adant3 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 59 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑦 , 𝑥 } ) |
| 60 |
59
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 61 |
60
|
3adant2 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 62 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑧 , 𝑥 } ) |
| 63 |
62
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 64 |
63
|
3adant1 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 65 |
58 61 64
|
3anbi123d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) ) |
| 66 |
55 65
|
imbitrrid |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 67 |
49 66
|
jaoi |
⊢ ( ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 68 |
|
3anrot |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 69 |
|
biid |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) |
| 70 |
53 19 69
|
3anbi123i |
⊢ ( ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 71 |
68 70
|
sylbb |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 72 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑧 , 𝑥 } ) |
| 73 |
72
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 74 |
73
|
3adant3 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 75 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑧 , 𝑦 } ) |
| 76 |
75
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 77 |
76
|
3adant2 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 78 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑥 , 𝑦 } ) |
| 79 |
78
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 80 |
79
|
3adant1 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 81 |
74 77 80
|
3anbi123d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) ) |
| 82 |
71 81
|
imbitrrid |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 83 |
|
3anrev |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 84 |
19 53 36
|
3anbi123i |
⊢ ( ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 85 |
83 84
|
sylbb |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 86 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } = { 𝑧 , 𝑦 } ) |
| 87 |
86
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 88 |
87
|
3adant3 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
| 89 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } = { 𝑧 , 𝑥 } ) |
| 90 |
89
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 91 |
90
|
3adant2 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
| 92 |
|
preq12 |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } = { 𝑦 , 𝑥 } ) |
| 93 |
92
|
eleq1d |
⊢ ( ( ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 94 |
93
|
3adant1 |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
| 95 |
88 91 94
|
3anbi123d |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) ) |
| 96 |
85 95
|
imbitrrid |
⊢ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 97 |
82 96
|
jaoi |
⊢ ( ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 98 |
33 67 97
|
3jaoi |
⊢ ( ( ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 99 |
|
f1of1 |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑥 , 𝑦 , 𝑧 } ) |
| 100 |
|
fvf1tp |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑥 , 𝑦 , 𝑧 } → ( ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ) ) |
| 101 |
99 100
|
syl |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → ( ( ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑥 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑦 ∧ ( 𝐹 ‘ 1 ) = 𝑧 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑥 ∧ ( 𝐹 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑧 ∧ ( 𝐹 ‘ 1 ) = 𝑦 ∧ ( 𝐹 ‘ 2 ) = 𝑥 ) ) ) ) |
| 102 |
98 101
|
syl11 |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 103 |
102
|
adantl |
⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 104 |
5 103
|
sylbid |
⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 105 |
104
|
3adant2 |
⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 106 |
105
|
a1i |
⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) ) |
| 107 |
106
|
rexlimivv |
⊢ ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 108 |
107
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 109 |
3 108
|
syl |
⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → ( 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 110 |
109
|
imp |
⊢ ( ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ∧ 𝐹 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) → ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝐹 ‘ 1 ) , ( 𝐹 ‘ 2 ) } ∈ 𝐸 ) ) |