Metamath Proof Explorer


Theorem grtriproplem

Description: Lemma for grtriprop . (Contributed by AV, 23-Jul-2025)

Ref Expression
Assertion grtriproplem f : 0 ..^ 3 1-1 onto x y z f 0 f 1 E f 0 f 2 E f 1 f 2 E x y E x z E y z E

Proof

Step Hyp Ref Expression
1 f1of1 f : 0 ..^ 3 1-1 onto x y z f : 0 ..^ 3 1-1 x y z
2 fvf1tp f : 0 ..^ 3 1-1 x y z f 0 = x f 1 = y f 2 = z f 0 = x f 1 = z f 2 = y f 0 = y f 1 = x f 2 = z f 0 = y f 1 = z f 2 = x f 0 = z f 1 = x f 2 = y f 0 = z f 1 = y f 2 = x
3 simp1 f 0 = x f 1 = y f 2 = z f 0 = x
4 simp2 f 0 = x f 1 = y f 2 = z f 1 = y
5 3 4 preq12d f 0 = x f 1 = y f 2 = z f 0 f 1 = x y
6 5 eleq1d f 0 = x f 1 = y f 2 = z f 0 f 1 E x y E
7 simp3 f 0 = x f 1 = y f 2 = z f 2 = z
8 3 7 preq12d f 0 = x f 1 = y f 2 = z f 0 f 2 = x z
9 8 eleq1d f 0 = x f 1 = y f 2 = z f 0 f 2 E x z E
10 4 7 preq12d f 0 = x f 1 = y f 2 = z f 1 f 2 = y z
11 10 eleq1d f 0 = x f 1 = y f 2 = z f 1 f 2 E y z E
12 6 9 11 3anbi123d f 0 = x f 1 = y f 2 = z f 0 f 1 E f 0 f 2 E f 1 f 2 E x y E x z E y z E
13 12 biimpd f 0 = x f 1 = y f 2 = z f 0 f 1 E f 0 f 2 E f 1 f 2 E x y E x z E y z E
14 simp1 f 0 = x f 1 = z f 2 = y f 0 = x
15 simp2 f 0 = x f 1 = z f 2 = y f 1 = z
16 14 15 preq12d f 0 = x f 1 = z f 2 = y f 0 f 1 = x z
17 16 eleq1d f 0 = x f 1 = z f 2 = y f 0 f 1 E x z E
18 simp3 f 0 = x f 1 = z f 2 = y f 2 = y
19 14 18 preq12d f 0 = x f 1 = z f 2 = y f 0 f 2 = x y
20 19 eleq1d f 0 = x f 1 = z f 2 = y f 0 f 2 E x y E
21 15 18 preq12d f 0 = x f 1 = z f 2 = y f 1 f 2 = z y
22 21 eleq1d f 0 = x f 1 = z f 2 = y f 1 f 2 E z y E
23 17 20 22 3anbi123d f 0 = x f 1 = z f 2 = y f 0 f 1 E f 0 f 2 E f 1 f 2 E x z E x y E z y E
24 3ancoma x z E x y E z y E x y E x z E z y E
25 prcom z y = y z
26 25 eleq1i z y E y z E
27 26 3anbi3i x y E x z E z y E x y E x z E y z E
28 24 27 sylbb x z E x y E z y E x y E x z E y z E
29 23 28 biimtrdi f 0 = x f 1 = z f 2 = y f 0 f 1 E f 0 f 2 E f 1 f 2 E x y E x z E y z E
30 13 29 jaoi f 0 = x f 1 = y f 2 = z f 0 = x f 1 = z f 2 = y f 0 f 1 E f 0 f 2 E f 1 f 2 E x y E x z E y z E
31 simp1 f 0 = y f 1 = x f 2 = z f 0 = y
32 simp2 f 0 = y f 1 = x f 2 = z f 1 = x
33 31 32 preq12d f 0 = y f 1 = x f 2 = z f 0 f 1 = y x
34 33 eleq1d f 0 = y f 1 = x f 2 = z f 0 f 1 E y x E
35 simp3 f 0 = y f 1 = x f 2 = z f 2 = z
36 31 35 preq12d f 0 = y f 1 = x f 2 = z f 0 f 2 = y z
37 36 eleq1d f 0 = y f 1 = x f 2 = z f 0 f 2 E y z E
38 32 35 preq12d f 0 = y f 1 = x f 2 = z f 1 f 2 = x z
39 38 eleq1d f 0 = y f 1 = x f 2 = z f 1 f 2 E x z E
40 34 37 39 3anbi123d f 0 = y f 1 = x f 2 = z f 0 f 1 E f 0 f 2 E f 1 f 2 E y x E y z E x z E
41 3ancomb y x E y z E x z E y x E x z E y z E
42 prcom y x = x y
43 42 eleq1i y x E x y E
44 43 3anbi1i y x E x z E y z E x y E x z E y z E
45 41 44 sylbb y x E y z E x z E x y E x z E y z E
46 40 45 biimtrdi f 0 = y f 1 = x f 2 = z f 0 f 1 E f 0 f 2 E f 1 f 2 E x y E x z E y z E
47 simp1 f 0 = y f 1 = z f 2 = x f 0 = y
48 simp2 f 0 = y f 1 = z f 2 = x f 1 = z
49 47 48 preq12d f 0 = y f 1 = z f 2 = x f 0 f 1 = y z
50 49 eleq1d f 0 = y f 1 = z f 2 = x f 0 f 1 E y z E
51 simp3 f 0 = y f 1 = z f 2 = x f 2 = x
52 47 51 preq12d f 0 = y f 1 = z f 2 = x f 0 f 2 = y x
53 52 eleq1d f 0 = y f 1 = z f 2 = x f 0 f 2 E y x E
54 48 51 preq12d f 0 = y f 1 = z f 2 = x f 1 f 2 = z x
55 54 eleq1d f 0 = y f 1 = z f 2 = x f 1 f 2 E z x E
56 50 53 55 3anbi123d f 0 = y f 1 = z f 2 = x f 0 f 1 E f 0 f 2 E f 1 f 2 E y z E y x E z x E
57 3anrot y z E y x E z x E y x E z x E y z E
58 prcom z x = x z
59 58 eleq1i z x E x z E
60 biid y z E y z E
61 43 59 60 3anbi123i y x E z x E y z E x y E x z E y z E
62 57 61 sylbb y z E y x E z x E x y E x z E y z E
63 56 62 biimtrdi f 0 = y f 1 = z f 2 = x f 0 f 1 E f 0 f 2 E f 1 f 2 E x y E x z E y z E
64 46 63 jaoi f 0 = y f 1 = x f 2 = z f 0 = y f 1 = z f 2 = x f 0 f 1 E f 0 f 2 E f 1 f 2 E x y E x z E y z E
65 simp1 f 0 = z f 1 = x f 2 = y f 0 = z
66 simp2 f 0 = z f 1 = x f 2 = y f 1 = x
67 65 66 preq12d f 0 = z f 1 = x f 2 = y f 0 f 1 = z x
68 67 eleq1d f 0 = z f 1 = x f 2 = y f 0 f 1 E z x E
69 simp3 f 0 = z f 1 = x f 2 = y f 2 = y
70 65 69 preq12d f 0 = z f 1 = x f 2 = y f 0 f 2 = z y
71 70 eleq1d f 0 = z f 1 = x f 2 = y f 0 f 2 E z y E
72 66 69 preq12d f 0 = z f 1 = x f 2 = y f 1 f 2 = x y
73 72 eleq1d f 0 = z f 1 = x f 2 = y f 1 f 2 E x y E
74 68 71 73 3anbi123d f 0 = z f 1 = x f 2 = y f 0 f 1 E f 0 f 2 E f 1 f 2 E z x E z y E x y E
75 3anrot x y E x z E y z E x z E y z E x y E
76 prcom x z = z x
77 76 eleq1i x z E z x E
78 prcom y z = z y
79 78 eleq1i y z E z y E
80 biid x y E x y E
81 77 79 80 3anbi123i x z E y z E x y E z x E z y E x y E
82 75 81 sylbbr z x E z y E x y E x y E x z E y z E
83 74 82 biimtrdi f 0 = z f 1 = x f 2 = y f 0 f 1 E f 0 f 2 E f 1 f 2 E x y E x z E y z E
84 simp1 f 0 = z f 1 = y f 2 = x f 0 = z
85 simp2 f 0 = z f 1 = y f 2 = x f 1 = y
86 84 85 preq12d f 0 = z f 1 = y f 2 = x f 0 f 1 = z y
87 86 eleq1d f 0 = z f 1 = y f 2 = x f 0 f 1 E z y E
88 simp3 f 0 = z f 1 = y f 2 = x f 2 = x
89 84 88 preq12d f 0 = z f 1 = y f 2 = x f 0 f 2 = z x
90 89 eleq1d f 0 = z f 1 = y f 2 = x f 0 f 2 E z x E
91 85 88 preq12d f 0 = z f 1 = y f 2 = x f 1 f 2 = y x
92 91 eleq1d f 0 = z f 1 = y f 2 = x f 1 f 2 E y x E
93 87 90 92 3anbi123d f 0 = z f 1 = y f 2 = x f 0 f 1 E f 0 f 2 E f 1 f 2 E z y E z x E y x E
94 3anrev z y E z x E y x E y x E z x E z y E
95 43 59 26 3anbi123i y x E z x E z y E x y E x z E y z E
96 94 95 sylbb z y E z x E y x E x y E x z E y z E
97 93 96 biimtrdi f 0 = z f 1 = y f 2 = x f 0 f 1 E f 0 f 2 E f 1 f 2 E x y E x z E y z E
98 83 97 jaoi f 0 = z f 1 = x f 2 = y f 0 = z f 1 = y f 2 = x f 0 f 1 E f 0 f 2 E f 1 f 2 E x y E x z E y z E
99 30 64 98 3jaoi f 0 = x f 1 = y f 2 = z f 0 = x f 1 = z f 2 = y f 0 = y f 1 = x f 2 = z f 0 = y f 1 = z f 2 = x f 0 = z f 1 = x f 2 = y f 0 = z f 1 = y f 2 = x f 0 f 1 E f 0 f 2 E f 1 f 2 E x y E x z E y z E
100 1 2 99 3syl f : 0 ..^ 3 1-1 onto x y z f 0 f 1 E f 0 f 2 E f 1 f 2 E x y E x z E y z E
101 100 imp f : 0 ..^ 3 1-1 onto x y z f 0 f 1 E f 0 f 2 E f 1 f 2 E x y E x z E y z E