Step |
Hyp |
Ref |
Expression |
1 |
|
f1of1 |
⊢ ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → 𝑓 : ( 0 ..^ 3 ) –1-1→ { 𝑥 , 𝑦 , 𝑧 } ) |
2 |
|
fvf1tp |
⊢ ( 𝑓 : ( 0 ..^ 3 ) –1-1→ { 𝑥 , 𝑦 , 𝑧 } → ( ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) ) ∨ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) ) ∨ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) ) ) ) |
3 |
|
simp1 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( 𝑓 ‘ 0 ) = 𝑥 ) |
4 |
|
simp2 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( 𝑓 ‘ 1 ) = 𝑦 ) |
5 |
3 4
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } = { 𝑥 , 𝑦 } ) |
6 |
5
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
7 |
|
simp3 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( 𝑓 ‘ 2 ) = 𝑧 ) |
8 |
3 7
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } = { 𝑥 , 𝑧 } ) |
9 |
8
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
10 |
4 7
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } = { 𝑦 , 𝑧 } ) |
11 |
10
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
12 |
6 9 11
|
3anbi123d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
13 |
12
|
biimpd |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
14 |
|
simp1 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( 𝑓 ‘ 0 ) = 𝑥 ) |
15 |
|
simp2 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( 𝑓 ‘ 1 ) = 𝑧 ) |
16 |
14 15
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } = { 𝑥 , 𝑧 } ) |
17 |
16
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
18 |
|
simp3 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( 𝑓 ‘ 2 ) = 𝑦 ) |
19 |
14 18
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } = { 𝑥 , 𝑦 } ) |
20 |
19
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
21 |
15 18
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } = { 𝑧 , 𝑦 } ) |
22 |
21
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
23 |
17 20 22
|
3anbi123d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) ) |
24 |
|
3ancoma |
⊢ ( ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
25 |
|
prcom |
⊢ { 𝑧 , 𝑦 } = { 𝑦 , 𝑧 } |
26 |
25
|
eleq1i |
⊢ ( { 𝑧 , 𝑦 } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) |
27 |
26
|
3anbi3i |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
28 |
24 27
|
sylbb |
⊢ ( ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
29 |
23 28
|
biimtrdi |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
30 |
13 29
|
jaoi |
⊢ ( ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
31 |
|
simp1 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( 𝑓 ‘ 0 ) = 𝑦 ) |
32 |
|
simp2 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( 𝑓 ‘ 1 ) = 𝑥 ) |
33 |
31 32
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } = { 𝑦 , 𝑥 } ) |
34 |
33
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
35 |
|
simp3 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( 𝑓 ‘ 2 ) = 𝑧 ) |
36 |
31 35
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } = { 𝑦 , 𝑧 } ) |
37 |
36
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
38 |
32 35
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } = { 𝑥 , 𝑧 } ) |
39 |
38
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) |
40 |
34 37 39
|
3anbi123d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ) ) |
41 |
|
3ancomb |
⊢ ( ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
42 |
|
prcom |
⊢ { 𝑦 , 𝑥 } = { 𝑥 , 𝑦 } |
43 |
42
|
eleq1i |
⊢ ( { 𝑦 , 𝑥 } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) |
44 |
43
|
3anbi1i |
⊢ ( ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
45 |
41 44
|
sylbb |
⊢ ( ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
46 |
40 45
|
biimtrdi |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
47 |
|
simp1 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( 𝑓 ‘ 0 ) = 𝑦 ) |
48 |
|
simp2 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( 𝑓 ‘ 1 ) = 𝑧 ) |
49 |
47 48
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } = { 𝑦 , 𝑧 } ) |
50 |
49
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
51 |
|
simp3 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( 𝑓 ‘ 2 ) = 𝑥 ) |
52 |
47 51
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } = { 𝑦 , 𝑥 } ) |
53 |
52
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
54 |
48 51
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } = { 𝑧 , 𝑥 } ) |
55 |
54
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
56 |
50 53 55
|
3anbi123d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) ) |
57 |
|
3anrot |
⊢ ( ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
58 |
|
prcom |
⊢ { 𝑧 , 𝑥 } = { 𝑥 , 𝑧 } |
59 |
58
|
eleq1i |
⊢ ( { 𝑧 , 𝑥 } ∈ 𝐸 ↔ { 𝑥 , 𝑧 } ∈ 𝐸 ) |
60 |
|
biid |
⊢ ( { 𝑦 , 𝑧 } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) |
61 |
43 59 60
|
3anbi123i |
⊢ ( ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
62 |
57 61
|
sylbb |
⊢ ( ( { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
63 |
56 62
|
biimtrdi |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
64 |
46 63
|
jaoi |
⊢ ( ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
65 |
|
simp1 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( 𝑓 ‘ 0 ) = 𝑧 ) |
66 |
|
simp2 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( 𝑓 ‘ 1 ) = 𝑥 ) |
67 |
65 66
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } = { 𝑧 , 𝑥 } ) |
68 |
67
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
69 |
|
simp3 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( 𝑓 ‘ 2 ) = 𝑦 ) |
70 |
65 69
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } = { 𝑧 , 𝑦 } ) |
71 |
70
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
72 |
66 69
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } = { 𝑥 , 𝑦 } ) |
73 |
72
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
74 |
68 71 73
|
3anbi123d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) ) |
75 |
|
3anrot |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
76 |
|
prcom |
⊢ { 𝑥 , 𝑧 } = { 𝑧 , 𝑥 } |
77 |
76
|
eleq1i |
⊢ ( { 𝑥 , 𝑧 } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) |
78 |
|
prcom |
⊢ { 𝑦 , 𝑧 } = { 𝑧 , 𝑦 } |
79 |
78
|
eleq1i |
⊢ ( { 𝑦 , 𝑧 } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) |
80 |
|
biid |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑥 , 𝑦 } ∈ 𝐸 ) |
81 |
77 79 80
|
3anbi123i |
⊢ ( ( { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
82 |
75 81
|
sylbbr |
⊢ ( ( { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
83 |
74 82
|
biimtrdi |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
84 |
|
simp1 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( 𝑓 ‘ 0 ) = 𝑧 ) |
85 |
|
simp2 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( 𝑓 ‘ 1 ) = 𝑦 ) |
86 |
84 85
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } = { 𝑧 , 𝑦 } ) |
87 |
86
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
88 |
|
simp3 |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( 𝑓 ‘ 2 ) = 𝑥 ) |
89 |
84 88
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } = { 𝑧 , 𝑥 } ) |
90 |
89
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑧 , 𝑥 } ∈ 𝐸 ) ) |
91 |
85 88
|
preq12d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } = { 𝑦 , 𝑥 } ) |
92 |
91
|
eleq1d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ↔ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) |
93 |
87 90 92
|
3anbi123d |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ↔ ( { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ) ) ) |
94 |
|
3anrev |
⊢ ( ( { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ) |
95 |
43 59 26
|
3anbi123i |
⊢ ( ( { 𝑦 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑧 , 𝑦 } ∈ 𝐸 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
96 |
94 95
|
sylbb |
⊢ ( ( { 𝑧 , 𝑦 } ∈ 𝐸 ∧ { 𝑧 , 𝑥 } ∈ 𝐸 ∧ { 𝑦 , 𝑥 } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
97 |
93 96
|
biimtrdi |
⊢ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
98 |
83 97
|
jaoi |
⊢ ( ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
99 |
30 64 98
|
3jaoi |
⊢ ( ( ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) ) ∨ ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑧 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑧 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) ) ∨ ( ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( 𝑓 ‘ 2 ) = 𝑦 ) ∨ ( ( 𝑓 ‘ 0 ) = 𝑧 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ∧ ( 𝑓 ‘ 2 ) = 𝑥 ) ) ) → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
100 |
1 2 99
|
3syl |
⊢ ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
101 |
100
|
imp |
⊢ ( ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ { 𝑥 , 𝑦 , 𝑧 } ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑥 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |