Step |
Hyp |
Ref |
Expression |
1 |
|
grtri.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
grtri.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
df-grtri |
⊢ GrTriangles = ( 𝑔 ∈ V ↦ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } ) |
4 |
3
|
a1i |
⊢ ( 𝐺 ∈ 𝑊 → GrTriangles = ( 𝑔 ∈ V ↦ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } ) ) |
5 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 ) |
7 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Edg ‘ 𝑔 ) = ( Edg ‘ 𝐺 ) ) |
8 |
7 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Edg ‘ 𝑔 ) = 𝐸 ) |
9 |
8
|
csbeq1d |
⊢ ( 𝑔 = 𝐺 → ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } = ⦋ 𝐸 / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } ) |
10 |
6 9
|
csbeq12dv |
⊢ ( 𝑔 = 𝐺 → ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } = ⦋ 𝑉 / 𝑣 ⦌ ⦋ 𝐸 / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } ) |
11 |
10
|
adantl |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑔 = 𝐺 ) → ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } = ⦋ 𝑉 / 𝑣 ⦌ ⦋ 𝐸 / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } ) |
12 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
13 |
2
|
fvexi |
⊢ 𝐸 ∈ V |
14 |
|
pweq |
⊢ ( 𝑣 = 𝑉 → 𝒫 𝑣 = 𝒫 𝑉 ) |
15 |
14
|
adantr |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → 𝒫 𝑣 = 𝒫 𝑉 ) |
16 |
|
eleq2 |
⊢ ( 𝑒 = 𝐸 → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ↔ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ) ) |
17 |
|
eleq2 |
⊢ ( 𝑒 = 𝐸 → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ↔ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) |
18 |
|
eleq2 |
⊢ ( 𝑒 = 𝐸 → ( { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ↔ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) |
19 |
16 17 18
|
3anbi123d |
⊢ ( 𝑒 = 𝐸 → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ↔ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑒 = 𝐸 → ( ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) ↔ ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) ) |
21 |
20
|
exbidv |
⊢ ( 𝑒 = 𝐸 → ( ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) ) |
23 |
15 22
|
rabeqbidv |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } = { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } ) |
24 |
12 13 23
|
csbie2 |
⊢ ⦋ 𝑉 / 𝑣 ⦌ ⦋ 𝐸 / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } = { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } |
25 |
11 24
|
eqtrdi |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑔 = 𝐺 ) → ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } = { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } ) |
26 |
|
elex |
⊢ ( 𝐺 ∈ 𝑊 → 𝐺 ∈ V ) |
27 |
1
|
pweqi |
⊢ 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐺 ) |
28 |
|
fvex |
⊢ ( Vtx ‘ 𝐺 ) ∈ V |
29 |
28
|
pwex |
⊢ 𝒫 ( Vtx ‘ 𝐺 ) ∈ V |
30 |
27 29
|
eqeltri |
⊢ 𝒫 𝑉 ∈ V |
31 |
30
|
rabex |
⊢ { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } ∈ V |
32 |
31
|
a1i |
⊢ ( 𝐺 ∈ 𝑊 → { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } ∈ V ) |
33 |
4 25 26 32
|
fvmptd |
⊢ ( 𝐺 ∈ 𝑊 → ( GrTriangles ‘ 𝐺 ) = { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } ) |