Step |
Hyp |
Ref |
Expression |
0 |
|
cgrtri |
⊢ GrTriangles |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
cvtx |
⊢ Vtx |
4 |
1
|
cv |
⊢ 𝑔 |
5 |
4 3
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
6 |
|
vv |
⊢ 𝑣 |
7 |
|
cedg |
⊢ Edg |
8 |
4 7
|
cfv |
⊢ ( Edg ‘ 𝑔 ) |
9 |
|
ve |
⊢ 𝑒 |
10 |
|
vt |
⊢ 𝑡 |
11 |
6
|
cv |
⊢ 𝑣 |
12 |
11
|
cpw |
⊢ 𝒫 𝑣 |
13 |
|
vf |
⊢ 𝑓 |
14 |
13
|
cv |
⊢ 𝑓 |
15 |
|
cc0 |
⊢ 0 |
16 |
|
cfzo |
⊢ ..^ |
17 |
|
c3 |
⊢ 3 |
18 |
15 17 16
|
co |
⊢ ( 0 ..^ 3 ) |
19 |
10
|
cv |
⊢ 𝑡 |
20 |
18 19 14
|
wf1o |
⊢ 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 |
21 |
15 14
|
cfv |
⊢ ( 𝑓 ‘ 0 ) |
22 |
|
c1 |
⊢ 1 |
23 |
22 14
|
cfv |
⊢ ( 𝑓 ‘ 1 ) |
24 |
21 23
|
cpr |
⊢ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } |
25 |
9
|
cv |
⊢ 𝑒 |
26 |
24 25
|
wcel |
⊢ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 |
27 |
|
c2 |
⊢ 2 |
28 |
27 14
|
cfv |
⊢ ( 𝑓 ‘ 2 ) |
29 |
21 28
|
cpr |
⊢ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } |
30 |
29 25
|
wcel |
⊢ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 |
31 |
23 28
|
cpr |
⊢ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } |
32 |
31 25
|
wcel |
⊢ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 |
33 |
26 30 32
|
w3a |
⊢ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) |
34 |
20 33
|
wa |
⊢ ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) |
35 |
34 13
|
wex |
⊢ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) |
36 |
35 10 12
|
crab |
⊢ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } |
37 |
9 8 36
|
csb |
⊢ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } |
38 |
6 5 37
|
csb |
⊢ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } |
39 |
1 2 38
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } ) |
40 |
0 39
|
wceq |
⊢ GrTriangles = ( 𝑔 ∈ V ↦ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } ) |