Metamath Proof Explorer


Definition df-grtri

Description: Definition of a triangles in a graph. A triangle in a graph is a set of three (different) vertices completely connected with each other. Such vertices induce a closed walk of length 3, see grtriclwlk3 . (TODO: and a cycle of length 3 ,see grtricycl ). (Contributed by AV, 20-Jul-2025)

Ref Expression
Assertion df-grtri GrTriangles = ( 𝑔 ∈ V ↦ ( Vtx ‘ 𝑔 ) / 𝑣 ( Edg ‘ 𝑔 ) / 𝑒 { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgrtri GrTriangles
1 vg 𝑔
2 cvv V
3 cvtx Vtx
4 1 cv 𝑔
5 4 3 cfv ( Vtx ‘ 𝑔 )
6 vv 𝑣
7 cedg Edg
8 4 7 cfv ( Edg ‘ 𝑔 )
9 ve 𝑒
10 vt 𝑡
11 6 cv 𝑣
12 11 cpw 𝒫 𝑣
13 vf 𝑓
14 13 cv 𝑓
15 cc0 0
16 cfzo ..^
17 c3 3
18 15 17 16 co ( 0 ..^ 3 )
19 10 cv 𝑡
20 18 19 14 wf1o 𝑓 : ( 0 ..^ 3 ) –1-1-onto𝑡
21 15 14 cfv ( 𝑓 ‘ 0 )
22 c1 1
23 22 14 cfv ( 𝑓 ‘ 1 )
24 21 23 cpr { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) }
25 9 cv 𝑒
26 24 25 wcel { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒
27 c2 2
28 27 14 cfv ( 𝑓 ‘ 2 )
29 21 28 cpr { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) }
30 29 25 wcel { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒
31 23 28 cpr { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) }
32 31 25 wcel { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒
33 26 30 32 w3a ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 )
34 20 33 wa ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) )
35 34 13 wex 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) )
36 35 10 12 crab { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) }
37 9 8 36 csb ( Edg ‘ 𝑔 ) / 𝑒 { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) }
38 6 5 37 csb ( Vtx ‘ 𝑔 ) / 𝑣 ( Edg ‘ 𝑔 ) / 𝑒 { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) }
39 1 2 38 cmpt ( 𝑔 ∈ V ↦ ( Vtx ‘ 𝑔 ) / 𝑣 ( Edg ‘ 𝑔 ) / 𝑒 { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } )
40 0 39 wceq GrTriangles = ( 𝑔 ∈ V ↦ ( Vtx ‘ 𝑔 ) / 𝑣 ( Edg ‘ 𝑔 ) / 𝑒 { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } )