| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grtriclwlk3.t |
⊢ ( 𝜑 → 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ) |
| 2 |
|
grtriclwlk3.p |
⊢ ( 𝜑 → 𝑃 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) |
| 3 |
|
f1ofn |
⊢ ( 𝑃 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → 𝑃 Fn ( 0 ..^ 3 ) ) |
| 4 |
|
hashfn |
⊢ ( 𝑃 Fn ( 0 ..^ 3 ) → ( ♯ ‘ 𝑃 ) = ( ♯ ‘ ( 0 ..^ 3 ) ) ) |
| 5 |
2 3 4
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ♯ ‘ ( 0 ..^ 3 ) ) ) |
| 6 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 7 |
|
hashfzo0 |
⊢ ( 3 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 3 ) ) = 3 ) |
| 8 |
6 7
|
mp1i |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 3 ) ) = 3 ) |
| 9 |
5 8
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑃 ) = 3 ) |
| 10 |
|
f1of |
⊢ ( 𝑃 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → 𝑃 : ( 0 ..^ 3 ) ⟶ 𝑇 ) |
| 11 |
2 10
|
syl |
⊢ ( 𝜑 → 𝑃 : ( 0 ..^ 3 ) ⟶ 𝑇 ) |
| 12 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 13 |
12
|
grtrissvtx |
⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → 𝑇 ⊆ ( Vtx ‘ 𝐺 ) ) |
| 14 |
1 13
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ( Vtx ‘ 𝐺 ) ) |
| 15 |
11 14
|
jca |
⊢ ( 𝜑 → ( 𝑃 : ( 0 ..^ 3 ) ⟶ 𝑇 ∧ 𝑇 ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( 𝑃 : ( 0 ..^ 3 ) ⟶ 𝑇 ∧ 𝑇 ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 17 |
|
fss |
⊢ ( ( 𝑃 : ( 0 ..^ 3 ) ⟶ 𝑇 ∧ 𝑇 ⊆ ( Vtx ‘ 𝐺 ) ) → 𝑃 : ( 0 ..^ 3 ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 18 |
|
iswrdi |
⊢ ( 𝑃 : ( 0 ..^ 3 ) ⟶ ( Vtx ‘ 𝐺 ) → 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 19 |
16 17 18
|
3syl |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 20 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑃 ) = 3 → ( ( ♯ ‘ 𝑃 ) − 1 ) = ( 3 − 1 ) ) |
| 21 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
| 22 |
20 21
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝑃 ) = 3 → ( ( ♯ ‘ 𝑃 ) − 1 ) = 2 ) |
| 23 |
22
|
oveq2d |
⊢ ( ( ♯ ‘ 𝑃 ) = 3 → ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 0 ..^ 2 ) ) |
| 24 |
|
fzo0to2pr |
⊢ ( 0 ..^ 2 ) = { 0 , 1 } |
| 25 |
23 24
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝑃 ) = 3 → ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = { 0 , 1 } ) |
| 26 |
25
|
eleq2d |
⊢ ( ( ♯ ‘ 𝑃 ) = 3 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↔ 𝑖 ∈ { 0 , 1 } ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↔ 𝑖 ∈ { 0 , 1 } ) ) |
| 28 |
1 2
|
jca |
⊢ ( 𝜑 → ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ∧ 𝑃 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) ) |
| 29 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 30 |
12 29
|
grtrif1o |
⊢ ( ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ∧ 𝑃 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 31 |
|
simp1 |
⊢ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 32 |
28 30 31
|
3syl |
⊢ ( 𝜑 → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 0 ) ) |
| 35 |
|
fv0p1e1 |
⊢ ( 𝑖 = 0 → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ 1 ) ) |
| 36 |
34 35
|
preq12d |
⊢ ( 𝑖 = 0 → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
| 37 |
36
|
eleq1d |
⊢ ( 𝑖 = 0 → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 38 |
33 37
|
imbitrrid |
⊢ ( 𝑖 = 0 → ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 39 |
|
simp3 |
⊢ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 40 |
28 30 39
|
3syl |
⊢ ( 𝜑 → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 42 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 1 ) ) |
| 43 |
|
oveq1 |
⊢ ( 𝑖 = 1 → ( 𝑖 + 1 ) = ( 1 + 1 ) ) |
| 44 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 45 |
43 44
|
eqtrdi |
⊢ ( 𝑖 = 1 → ( 𝑖 + 1 ) = 2 ) |
| 46 |
45
|
fveq2d |
⊢ ( 𝑖 = 1 → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ 2 ) ) |
| 47 |
42 46
|
preq12d |
⊢ ( 𝑖 = 1 → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 48 |
47
|
eleq1d |
⊢ ( 𝑖 = 1 → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 49 |
41 48
|
imbitrrid |
⊢ ( 𝑖 = 1 → ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 50 |
38 49
|
jaoi |
⊢ ( ( 𝑖 = 0 ∨ 𝑖 = 1 ) → ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 51 |
|
elpri |
⊢ ( 𝑖 ∈ { 0 , 1 } → ( 𝑖 = 0 ∨ 𝑖 = 1 ) ) |
| 52 |
50 51
|
syl11 |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( 𝑖 ∈ { 0 , 1 } → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 53 |
27 52
|
sylbid |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 54 |
53
|
ralrimiv |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 55 |
|
ovexd |
⊢ ( 𝑃 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( 0 ..^ 3 ) ∈ V ) |
| 56 |
10 55
|
jca |
⊢ ( 𝑃 : ( 0 ..^ 3 ) –1-1-onto→ 𝑇 → ( 𝑃 : ( 0 ..^ 3 ) ⟶ 𝑇 ∧ ( 0 ..^ 3 ) ∈ V ) ) |
| 57 |
|
fex |
⊢ ( ( 𝑃 : ( 0 ..^ 3 ) ⟶ 𝑇 ∧ ( 0 ..^ 3 ) ∈ V ) → 𝑃 ∈ V ) |
| 58 |
2 56 57
|
3syl |
⊢ ( 𝜑 → 𝑃 ∈ V ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → 𝑃 ∈ V ) |
| 60 |
|
lsw |
⊢ ( 𝑃 ∈ V → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 61 |
59 60
|
syl |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 62 |
22
|
fveq2d |
⊢ ( ( ♯ ‘ 𝑃 ) = 3 → ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 2 ) ) |
| 63 |
62
|
adantl |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 2 ) ) |
| 64 |
61 63
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 2 ) ) |
| 65 |
64
|
preq1d |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( lastS ‘ 𝑃 ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ) |
| 66 |
|
prcom |
⊢ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } |
| 67 |
66
|
eleq1i |
⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 68 |
67
|
biimpi |
⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 69 |
68
|
3ad2ant2 |
⊢ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 70 |
28 30 69
|
3syl |
⊢ ( 𝜑 → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 72 |
65 71
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → { ( lastS ‘ 𝑃 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 73 |
19 54 72
|
3jca |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑃 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 74 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( ♯ ‘ 𝑃 ) = 3 ) |
| 75 |
73 74
|
jca |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 3 ) → ( ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑃 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑃 ) = 3 ) ) |
| 76 |
9 75
|
mpdan |
⊢ ( 𝜑 → ( ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑃 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑃 ) = 3 ) ) |
| 77 |
|
3nn |
⊢ 3 ∈ ℕ |
| 78 |
12 29
|
isclwwlknx |
⊢ ( 3 ∈ ℕ → ( 𝑃 ∈ ( 3 ClWWalksN 𝐺 ) ↔ ( ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑃 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑃 ) = 3 ) ) ) |
| 79 |
77 78
|
mp1i |
⊢ ( 𝜑 → ( 𝑃 ∈ ( 3 ClWWalksN 𝐺 ) ↔ ( ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑃 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑃 ) = 3 ) ) ) |
| 80 |
76 79
|
mpbird |
⊢ ( 𝜑 → 𝑃 ∈ ( 3 ClWWalksN 𝐺 ) ) |