Step |
Hyp |
Ref |
Expression |
1 |
|
grtrissvtx.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
grtriprop |
⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
4 |
|
tpssi |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → { 𝑥 , 𝑦 , 𝑧 } ⊆ 𝑉 ) |
5 |
4
|
3expa |
⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑉 ) → { 𝑥 , 𝑦 , 𝑧 } ⊆ 𝑉 ) |
6 |
|
sseq1 |
⊢ ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } → ( 𝑇 ⊆ 𝑉 ↔ { 𝑥 , 𝑦 , 𝑧 } ⊆ 𝑉 ) ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑇 ⊆ 𝑉 ↔ { 𝑥 , 𝑦 , 𝑧 } ⊆ 𝑉 ) ) |
8 |
5 7
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝑇 ⊆ 𝑉 ) ) |
9 |
8
|
rexlimdva |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝑇 ⊆ 𝑉 ) ) |
10 |
9
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑇 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝑇 ⊆ 𝑉 ) |
11 |
3 10
|
syl |
⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → 𝑇 ⊆ 𝑉 ) |