Metamath Proof Explorer


Theorem grtrissvtx

Description: A triangle is a subset of the vertices (of a graph). (Contributed by AV, 26-Jul-2025)

Ref Expression
Hypothesis grtrissvtx.v V = Vtx G
Assertion grtrissvtx Could not format assertion : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> T C_ V ) with typecode |-

Proof

Step Hyp Ref Expression
1 grtrissvtx.v V = Vtx G
2 eqid Edg G = Edg G
3 1 2 grtriprop Could not format ( T e. ( GrTriangles ` G ) -> E. x e. V E. y e. V E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. ( Edg ` G ) /\ { x , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> E. x e. V E. y e. V E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. ( Edg ` G ) /\ { x , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) ) ) with typecode |-
4 tpssi x V y V z V x y z V
5 4 3expa x V y V z V x y z V
6 sseq1 T = x y z T V x y z V
7 6 3ad2ant1 T = x y z T = 3 x y Edg G x z Edg G y z Edg G T V x y z V
8 5 7 syl5ibrcom x V y V z V T = x y z T = 3 x y Edg G x z Edg G y z Edg G T V
9 8 rexlimdva x V y V z V T = x y z T = 3 x y Edg G x z Edg G y z Edg G T V
10 9 rexlimivv x V y V z V T = x y z T = 3 x y Edg G x z Edg G y z Edg G T V
11 3 10 syl Could not format ( T e. ( GrTriangles ` G ) -> T C_ V ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> T C_ V ) with typecode |-