Metamath Proof Explorer


Theorem grtriclwlk3

Description: A triangle induces a closed walk of length 3 . (Contributed by AV, 26-Jul-2025)

Ref Expression
Hypotheses grtriclwlk3.t No typesetting found for |- ( ph -> T e. ( GrTriangles ` G ) ) with typecode |-
grtriclwlk3.p φ P : 0 ..^ 3 1-1 onto T
Assertion grtriclwlk3 φ P 3 ClWWalksN G

Proof

Step Hyp Ref Expression
1 grtriclwlk3.t Could not format ( ph -> T e. ( GrTriangles ` G ) ) : No typesetting found for |- ( ph -> T e. ( GrTriangles ` G ) ) with typecode |-
2 grtriclwlk3.p φ P : 0 ..^ 3 1-1 onto T
3 f1ofn P : 0 ..^ 3 1-1 onto T P Fn 0 ..^ 3
4 hashfn P Fn 0 ..^ 3 P = 0 ..^ 3
5 2 3 4 3syl φ P = 0 ..^ 3
6 3nn0 3 0
7 hashfzo0 3 0 0 ..^ 3 = 3
8 6 7 mp1i φ 0 ..^ 3 = 3
9 5 8 eqtrd φ P = 3
10 f1of P : 0 ..^ 3 1-1 onto T P : 0 ..^ 3 T
11 2 10 syl φ P : 0 ..^ 3 T
12 eqid Vtx G = Vtx G
13 12 grtrissvtx Could not format ( T e. ( GrTriangles ` G ) -> T C_ ( Vtx ` G ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> T C_ ( Vtx ` G ) ) with typecode |-
14 1 13 syl φ T Vtx G
15 11 14 jca φ P : 0 ..^ 3 T T Vtx G
16 15 adantr φ P = 3 P : 0 ..^ 3 T T Vtx G
17 fss P : 0 ..^ 3 T T Vtx G P : 0 ..^ 3 Vtx G
18 iswrdi P : 0 ..^ 3 Vtx G P Word Vtx G
19 16 17 18 3syl φ P = 3 P Word Vtx G
20 oveq1 P = 3 P 1 = 3 1
21 3m1e2 3 1 = 2
22 20 21 eqtrdi P = 3 P 1 = 2
23 22 oveq2d P = 3 0 ..^ P 1 = 0 ..^ 2
24 fzo0to2pr 0 ..^ 2 = 0 1
25 23 24 eqtrdi P = 3 0 ..^ P 1 = 0 1
26 25 eleq2d P = 3 i 0 ..^ P 1 i 0 1
27 26 adantl φ P = 3 i 0 ..^ P 1 i 0 1
28 1 2 jca Could not format ( ph -> ( T e. ( GrTriangles ` G ) /\ P : ( 0 ..^ 3 ) -1-1-onto-> T ) ) : No typesetting found for |- ( ph -> ( T e. ( GrTriangles ` G ) /\ P : ( 0 ..^ 3 ) -1-1-onto-> T ) ) with typecode |-
29 eqid Edg G = Edg G
30 12 29 grtrif1o Could not format ( ( T e. ( GrTriangles ` G ) /\ P : ( 0 ..^ 3 ) -1-1-onto-> T ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) : No typesetting found for |- ( ( T e. ( GrTriangles ` G ) /\ P : ( 0 ..^ 3 ) -1-1-onto-> T ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) with typecode |-
31 simp1 P 0 P 1 Edg G P 0 P 2 Edg G P 1 P 2 Edg G P 0 P 1 Edg G
32 28 30 31 3syl φ P 0 P 1 Edg G
33 32 adantr φ P = 3 P 0 P 1 Edg G
34 fveq2 i = 0 P i = P 0
35 fv0p1e1 i = 0 P i + 1 = P 1
36 34 35 preq12d i = 0 P i P i + 1 = P 0 P 1
37 36 eleq1d i = 0 P i P i + 1 Edg G P 0 P 1 Edg G
38 33 37 imbitrrid i = 0 φ P = 3 P i P i + 1 Edg G
39 simp3 P 0 P 1 Edg G P 0 P 2 Edg G P 1 P 2 Edg G P 1 P 2 Edg G
40 28 30 39 3syl φ P 1 P 2 Edg G
41 40 adantr φ P = 3 P 1 P 2 Edg G
42 fveq2 i = 1 P i = P 1
43 oveq1 i = 1 i + 1 = 1 + 1
44 1p1e2 1 + 1 = 2
45 43 44 eqtrdi i = 1 i + 1 = 2
46 45 fveq2d i = 1 P i + 1 = P 2
47 42 46 preq12d i = 1 P i P i + 1 = P 1 P 2
48 47 eleq1d i = 1 P i P i + 1 Edg G P 1 P 2 Edg G
49 41 48 imbitrrid i = 1 φ P = 3 P i P i + 1 Edg G
50 38 49 jaoi i = 0 i = 1 φ P = 3 P i P i + 1 Edg G
51 elpri i 0 1 i = 0 i = 1
52 50 51 syl11 φ P = 3 i 0 1 P i P i + 1 Edg G
53 27 52 sylbid φ P = 3 i 0 ..^ P 1 P i P i + 1 Edg G
54 53 ralrimiv φ P = 3 i 0 ..^ P 1 P i P i + 1 Edg G
55 ovexd P : 0 ..^ 3 1-1 onto T 0 ..^ 3 V
56 10 55 jca P : 0 ..^ 3 1-1 onto T P : 0 ..^ 3 T 0 ..^ 3 V
57 fex P : 0 ..^ 3 T 0 ..^ 3 V P V
58 2 56 57 3syl φ P V
59 58 adantr φ P = 3 P V
60 lsw P V lastS P = P P 1
61 59 60 syl φ P = 3 lastS P = P P 1
62 22 fveq2d P = 3 P P 1 = P 2
63 62 adantl φ P = 3 P P 1 = P 2
64 61 63 eqtrd φ P = 3 lastS P = P 2
65 64 preq1d φ P = 3 lastS P P 0 = P 2 P 0
66 prcom P 0 P 2 = P 2 P 0
67 66 eleq1i P 0 P 2 Edg G P 2 P 0 Edg G
68 67 biimpi P 0 P 2 Edg G P 2 P 0 Edg G
69 68 3ad2ant2 P 0 P 1 Edg G P 0 P 2 Edg G P 1 P 2 Edg G P 2 P 0 Edg G
70 28 30 69 3syl φ P 2 P 0 Edg G
71 70 adantr φ P = 3 P 2 P 0 Edg G
72 65 71 eqeltrd φ P = 3 lastS P P 0 Edg G
73 19 54 72 3jca φ P = 3 P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G lastS P P 0 Edg G
74 simpr φ P = 3 P = 3
75 73 74 jca φ P = 3 P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G lastS P P 0 Edg G P = 3
76 9 75 mpdan φ P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G lastS P P 0 Edg G P = 3
77 3nn 3
78 12 29 isclwwlknx 3 P 3 ClWWalksN G P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G lastS P P 0 Edg G P = 3
79 77 78 mp1i φ P 3 ClWWalksN G P Word Vtx G i 0 ..^ P 1 P i P i + 1 Edg G lastS P P 0 Edg G P = 3
80 76 79 mpbird φ P 3 ClWWalksN G