| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grtriclwlk3.t |
Could not format ( ph -> T e. ( GrTriangles ` G ) ) : No typesetting found for |- ( ph -> T e. ( GrTriangles ` G ) ) with typecode |- |
| 2 |
|
grtriclwlk3.p |
|
| 3 |
|
f1ofn |
|
| 4 |
|
hashfn |
|
| 5 |
2 3 4
|
3syl |
|
| 6 |
|
3nn0 |
|
| 7 |
|
hashfzo0 |
|
| 8 |
6 7
|
mp1i |
|
| 9 |
5 8
|
eqtrd |
|
| 10 |
|
f1of |
|
| 11 |
2 10
|
syl |
|
| 12 |
|
eqid |
|
| 13 |
12
|
grtrissvtx |
Could not format ( T e. ( GrTriangles ` G ) -> T C_ ( Vtx ` G ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> T C_ ( Vtx ` G ) ) with typecode |- |
| 14 |
1 13
|
syl |
|
| 15 |
11 14
|
jca |
|
| 16 |
15
|
adantr |
|
| 17 |
|
fss |
|
| 18 |
|
iswrdi |
|
| 19 |
16 17 18
|
3syl |
|
| 20 |
|
oveq1 |
|
| 21 |
|
3m1e2 |
|
| 22 |
20 21
|
eqtrdi |
|
| 23 |
22
|
oveq2d |
|
| 24 |
|
fzo0to2pr |
|
| 25 |
23 24
|
eqtrdi |
|
| 26 |
25
|
eleq2d |
|
| 27 |
26
|
adantl |
|
| 28 |
1 2
|
jca |
Could not format ( ph -> ( T e. ( GrTriangles ` G ) /\ P : ( 0 ..^ 3 ) -1-1-onto-> T ) ) : No typesetting found for |- ( ph -> ( T e. ( GrTriangles ` G ) /\ P : ( 0 ..^ 3 ) -1-1-onto-> T ) ) with typecode |- |
| 29 |
|
eqid |
|
| 30 |
12 29
|
grtrif1o |
Could not format ( ( T e. ( GrTriangles ` G ) /\ P : ( 0 ..^ 3 ) -1-1-onto-> T ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) : No typesetting found for |- ( ( T e. ( GrTriangles ` G ) /\ P : ( 0 ..^ 3 ) -1-1-onto-> T ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) with typecode |- |
| 31 |
|
simp1 |
|
| 32 |
28 30 31
|
3syl |
|
| 33 |
32
|
adantr |
|
| 34 |
|
fveq2 |
|
| 35 |
|
fv0p1e1 |
|
| 36 |
34 35
|
preq12d |
|
| 37 |
36
|
eleq1d |
|
| 38 |
33 37
|
imbitrrid |
|
| 39 |
|
simp3 |
|
| 40 |
28 30 39
|
3syl |
|
| 41 |
40
|
adantr |
|
| 42 |
|
fveq2 |
|
| 43 |
|
oveq1 |
|
| 44 |
|
1p1e2 |
|
| 45 |
43 44
|
eqtrdi |
|
| 46 |
45
|
fveq2d |
|
| 47 |
42 46
|
preq12d |
|
| 48 |
47
|
eleq1d |
|
| 49 |
41 48
|
imbitrrid |
|
| 50 |
38 49
|
jaoi |
|
| 51 |
|
elpri |
|
| 52 |
50 51
|
syl11 |
|
| 53 |
27 52
|
sylbid |
|
| 54 |
53
|
ralrimiv |
|
| 55 |
|
ovexd |
|
| 56 |
10 55
|
jca |
|
| 57 |
|
fex |
|
| 58 |
2 56 57
|
3syl |
|
| 59 |
58
|
adantr |
|
| 60 |
|
lsw |
|
| 61 |
59 60
|
syl |
|
| 62 |
22
|
fveq2d |
|
| 63 |
62
|
adantl |
|
| 64 |
61 63
|
eqtrd |
|
| 65 |
64
|
preq1d |
|
| 66 |
|
prcom |
|
| 67 |
66
|
eleq1i |
|
| 68 |
67
|
biimpi |
|
| 69 |
68
|
3ad2ant2 |
|
| 70 |
28 30 69
|
3syl |
|
| 71 |
70
|
adantr |
|
| 72 |
65 71
|
eqeltrd |
|
| 73 |
19 54 72
|
3jca |
|
| 74 |
|
simpr |
|
| 75 |
73 74
|
jca |
|
| 76 |
9 75
|
mpdan |
|
| 77 |
|
3nn |
|
| 78 |
12 29
|
isclwwlknx |
|
| 79 |
77 78
|
mp1i |
|
| 80 |
76 79
|
mpbird |
|