| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grtriclwlk3.t |
|- ( ph -> T e. ( GrTriangles ` G ) ) |
| 2 |
|
grtriclwlk3.p |
|- ( ph -> P : ( 0 ..^ 3 ) -1-1-onto-> T ) |
| 3 |
|
f1ofn |
|- ( P : ( 0 ..^ 3 ) -1-1-onto-> T -> P Fn ( 0 ..^ 3 ) ) |
| 4 |
|
hashfn |
|- ( P Fn ( 0 ..^ 3 ) -> ( # ` P ) = ( # ` ( 0 ..^ 3 ) ) ) |
| 5 |
2 3 4
|
3syl |
|- ( ph -> ( # ` P ) = ( # ` ( 0 ..^ 3 ) ) ) |
| 6 |
|
3nn0 |
|- 3 e. NN0 |
| 7 |
|
hashfzo0 |
|- ( 3 e. NN0 -> ( # ` ( 0 ..^ 3 ) ) = 3 ) |
| 8 |
6 7
|
mp1i |
|- ( ph -> ( # ` ( 0 ..^ 3 ) ) = 3 ) |
| 9 |
5 8
|
eqtrd |
|- ( ph -> ( # ` P ) = 3 ) |
| 10 |
|
f1of |
|- ( P : ( 0 ..^ 3 ) -1-1-onto-> T -> P : ( 0 ..^ 3 ) --> T ) |
| 11 |
2 10
|
syl |
|- ( ph -> P : ( 0 ..^ 3 ) --> T ) |
| 12 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 13 |
12
|
grtrissvtx |
|- ( T e. ( GrTriangles ` G ) -> T C_ ( Vtx ` G ) ) |
| 14 |
1 13
|
syl |
|- ( ph -> T C_ ( Vtx ` G ) ) |
| 15 |
11 14
|
jca |
|- ( ph -> ( P : ( 0 ..^ 3 ) --> T /\ T C_ ( Vtx ` G ) ) ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( P : ( 0 ..^ 3 ) --> T /\ T C_ ( Vtx ` G ) ) ) |
| 17 |
|
fss |
|- ( ( P : ( 0 ..^ 3 ) --> T /\ T C_ ( Vtx ` G ) ) -> P : ( 0 ..^ 3 ) --> ( Vtx ` G ) ) |
| 18 |
|
iswrdi |
|- ( P : ( 0 ..^ 3 ) --> ( Vtx ` G ) -> P e. Word ( Vtx ` G ) ) |
| 19 |
16 17 18
|
3syl |
|- ( ( ph /\ ( # ` P ) = 3 ) -> P e. Word ( Vtx ` G ) ) |
| 20 |
|
oveq1 |
|- ( ( # ` P ) = 3 -> ( ( # ` P ) - 1 ) = ( 3 - 1 ) ) |
| 21 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 22 |
20 21
|
eqtrdi |
|- ( ( # ` P ) = 3 -> ( ( # ` P ) - 1 ) = 2 ) |
| 23 |
22
|
oveq2d |
|- ( ( # ` P ) = 3 -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = ( 0 ..^ 2 ) ) |
| 24 |
|
fzo0to2pr |
|- ( 0 ..^ 2 ) = { 0 , 1 } |
| 25 |
23 24
|
eqtrdi |
|- ( ( # ` P ) = 3 -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = { 0 , 1 } ) |
| 26 |
25
|
eleq2d |
|- ( ( # ` P ) = 3 -> ( i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) <-> i e. { 0 , 1 } ) ) |
| 27 |
26
|
adantl |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) <-> i e. { 0 , 1 } ) ) |
| 28 |
1 2
|
jca |
|- ( ph -> ( T e. ( GrTriangles ` G ) /\ P : ( 0 ..^ 3 ) -1-1-onto-> T ) ) |
| 29 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 30 |
12 29
|
grtrif1o |
|- ( ( T e. ( GrTriangles ` G ) /\ P : ( 0 ..^ 3 ) -1-1-onto-> T ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 31 |
|
simp1 |
|- ( ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) -> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) |
| 32 |
28 30 31
|
3syl |
|- ( ph -> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) |
| 34 |
|
fveq2 |
|- ( i = 0 -> ( P ` i ) = ( P ` 0 ) ) |
| 35 |
|
fv0p1e1 |
|- ( i = 0 -> ( P ` ( i + 1 ) ) = ( P ` 1 ) ) |
| 36 |
34 35
|
preq12d |
|- ( i = 0 -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 37 |
36
|
eleq1d |
|- ( i = 0 -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) ) |
| 38 |
33 37
|
imbitrrid |
|- ( i = 0 -> ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 39 |
|
simp3 |
|- ( ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) -> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) |
| 40 |
28 30 39
|
3syl |
|- ( ph -> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) |
| 42 |
|
fveq2 |
|- ( i = 1 -> ( P ` i ) = ( P ` 1 ) ) |
| 43 |
|
oveq1 |
|- ( i = 1 -> ( i + 1 ) = ( 1 + 1 ) ) |
| 44 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 45 |
43 44
|
eqtrdi |
|- ( i = 1 -> ( i + 1 ) = 2 ) |
| 46 |
45
|
fveq2d |
|- ( i = 1 -> ( P ` ( i + 1 ) ) = ( P ` 2 ) ) |
| 47 |
42 46
|
preq12d |
|- ( i = 1 -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` 1 ) , ( P ` 2 ) } ) |
| 48 |
47
|
eleq1d |
|- ( i = 1 -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 49 |
41 48
|
imbitrrid |
|- ( i = 1 -> ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 50 |
38 49
|
jaoi |
|- ( ( i = 0 \/ i = 1 ) -> ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 51 |
|
elpri |
|- ( i e. { 0 , 1 } -> ( i = 0 \/ i = 1 ) ) |
| 52 |
50 51
|
syl11 |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( i e. { 0 , 1 } -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 53 |
27 52
|
sylbid |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 54 |
53
|
ralrimiv |
|- ( ( ph /\ ( # ` P ) = 3 ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 55 |
|
ovexd |
|- ( P : ( 0 ..^ 3 ) -1-1-onto-> T -> ( 0 ..^ 3 ) e. _V ) |
| 56 |
10 55
|
jca |
|- ( P : ( 0 ..^ 3 ) -1-1-onto-> T -> ( P : ( 0 ..^ 3 ) --> T /\ ( 0 ..^ 3 ) e. _V ) ) |
| 57 |
|
fex |
|- ( ( P : ( 0 ..^ 3 ) --> T /\ ( 0 ..^ 3 ) e. _V ) -> P e. _V ) |
| 58 |
2 56 57
|
3syl |
|- ( ph -> P e. _V ) |
| 59 |
58
|
adantr |
|- ( ( ph /\ ( # ` P ) = 3 ) -> P e. _V ) |
| 60 |
|
lsw |
|- ( P e. _V -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
| 61 |
59 60
|
syl |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
| 62 |
22
|
fveq2d |
|- ( ( # ` P ) = 3 -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 2 ) ) |
| 63 |
62
|
adantl |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 2 ) ) |
| 64 |
61 63
|
eqtrd |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( lastS ` P ) = ( P ` 2 ) ) |
| 65 |
64
|
preq1d |
|- ( ( ph /\ ( # ` P ) = 3 ) -> { ( lastS ` P ) , ( P ` 0 ) } = { ( P ` 2 ) , ( P ` 0 ) } ) |
| 66 |
|
prcom |
|- { ( P ` 0 ) , ( P ` 2 ) } = { ( P ` 2 ) , ( P ` 0 ) } |
| 67 |
66
|
eleq1i |
|- ( { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) <-> { ( P ` 2 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
| 68 |
67
|
biimpi |
|- ( { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) -> { ( P ` 2 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
| 69 |
68
|
3ad2ant2 |
|- ( ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) -> { ( P ` 2 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
| 70 |
28 30 69
|
3syl |
|- ( ph -> { ( P ` 2 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
| 71 |
70
|
adantr |
|- ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` 2 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
| 72 |
65 71
|
eqeltrd |
|- ( ( ph /\ ( # ` P ) = 3 ) -> { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
| 73 |
19 54 72
|
3jca |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) |
| 74 |
|
simpr |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( # ` P ) = 3 ) |
| 75 |
73 74
|
jca |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( ( P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` P ) = 3 ) ) |
| 76 |
9 75
|
mpdan |
|- ( ph -> ( ( P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` P ) = 3 ) ) |
| 77 |
|
3nn |
|- 3 e. NN |
| 78 |
12 29
|
isclwwlknx |
|- ( 3 e. NN -> ( P e. ( 3 ClWWalksN G ) <-> ( ( P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` P ) = 3 ) ) ) |
| 79 |
77 78
|
mp1i |
|- ( ph -> ( P e. ( 3 ClWWalksN G ) <-> ( ( P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` P ) = 3 ) ) ) |
| 80 |
76 79
|
mpbird |
|- ( ph -> P e. ( 3 ClWWalksN G ) ) |