Step |
Hyp |
Ref |
Expression |
1 |
|
grtriclwlk3.t |
|- ( ph -> T e. ( GrTriangles ` G ) ) |
2 |
|
grtriclwlk3.p |
|- ( ph -> P : ( 0 ..^ 3 ) -1-1-onto-> T ) |
3 |
|
f1ofn |
|- ( P : ( 0 ..^ 3 ) -1-1-onto-> T -> P Fn ( 0 ..^ 3 ) ) |
4 |
|
hashfn |
|- ( P Fn ( 0 ..^ 3 ) -> ( # ` P ) = ( # ` ( 0 ..^ 3 ) ) ) |
5 |
2 3 4
|
3syl |
|- ( ph -> ( # ` P ) = ( # ` ( 0 ..^ 3 ) ) ) |
6 |
|
3nn0 |
|- 3 e. NN0 |
7 |
|
hashfzo0 |
|- ( 3 e. NN0 -> ( # ` ( 0 ..^ 3 ) ) = 3 ) |
8 |
6 7
|
mp1i |
|- ( ph -> ( # ` ( 0 ..^ 3 ) ) = 3 ) |
9 |
5 8
|
eqtrd |
|- ( ph -> ( # ` P ) = 3 ) |
10 |
|
f1of |
|- ( P : ( 0 ..^ 3 ) -1-1-onto-> T -> P : ( 0 ..^ 3 ) --> T ) |
11 |
2 10
|
syl |
|- ( ph -> P : ( 0 ..^ 3 ) --> T ) |
12 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
13 |
12
|
grtrissvtx |
|- ( T e. ( GrTriangles ` G ) -> T C_ ( Vtx ` G ) ) |
14 |
1 13
|
syl |
|- ( ph -> T C_ ( Vtx ` G ) ) |
15 |
11 14
|
jca |
|- ( ph -> ( P : ( 0 ..^ 3 ) --> T /\ T C_ ( Vtx ` G ) ) ) |
16 |
15
|
adantr |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( P : ( 0 ..^ 3 ) --> T /\ T C_ ( Vtx ` G ) ) ) |
17 |
|
fss |
|- ( ( P : ( 0 ..^ 3 ) --> T /\ T C_ ( Vtx ` G ) ) -> P : ( 0 ..^ 3 ) --> ( Vtx ` G ) ) |
18 |
|
iswrdi |
|- ( P : ( 0 ..^ 3 ) --> ( Vtx ` G ) -> P e. Word ( Vtx ` G ) ) |
19 |
16 17 18
|
3syl |
|- ( ( ph /\ ( # ` P ) = 3 ) -> P e. Word ( Vtx ` G ) ) |
20 |
|
oveq1 |
|- ( ( # ` P ) = 3 -> ( ( # ` P ) - 1 ) = ( 3 - 1 ) ) |
21 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
22 |
20 21
|
eqtrdi |
|- ( ( # ` P ) = 3 -> ( ( # ` P ) - 1 ) = 2 ) |
23 |
22
|
oveq2d |
|- ( ( # ` P ) = 3 -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = ( 0 ..^ 2 ) ) |
24 |
|
fzo0to2pr |
|- ( 0 ..^ 2 ) = { 0 , 1 } |
25 |
23 24
|
eqtrdi |
|- ( ( # ` P ) = 3 -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = { 0 , 1 } ) |
26 |
25
|
eleq2d |
|- ( ( # ` P ) = 3 -> ( i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) <-> i e. { 0 , 1 } ) ) |
27 |
26
|
adantl |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) <-> i e. { 0 , 1 } ) ) |
28 |
1 2
|
jca |
|- ( ph -> ( T e. ( GrTriangles ` G ) /\ P : ( 0 ..^ 3 ) -1-1-onto-> T ) ) |
29 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
30 |
12 29
|
grtrif1o |
|- ( ( T e. ( GrTriangles ` G ) /\ P : ( 0 ..^ 3 ) -1-1-onto-> T ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
31 |
|
simp1 |
|- ( ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) -> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) |
32 |
28 30 31
|
3syl |
|- ( ph -> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) |
33 |
32
|
adantr |
|- ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) |
34 |
|
fveq2 |
|- ( i = 0 -> ( P ` i ) = ( P ` 0 ) ) |
35 |
|
fv0p1e1 |
|- ( i = 0 -> ( P ` ( i + 1 ) ) = ( P ` 1 ) ) |
36 |
34 35
|
preq12d |
|- ( i = 0 -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
37 |
36
|
eleq1d |
|- ( i = 0 -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) ) |
38 |
33 37
|
imbitrrid |
|- ( i = 0 -> ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
39 |
|
simp3 |
|- ( ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) -> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) |
40 |
28 30 39
|
3syl |
|- ( ph -> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) |
41 |
40
|
adantr |
|- ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) |
42 |
|
fveq2 |
|- ( i = 1 -> ( P ` i ) = ( P ` 1 ) ) |
43 |
|
oveq1 |
|- ( i = 1 -> ( i + 1 ) = ( 1 + 1 ) ) |
44 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
45 |
43 44
|
eqtrdi |
|- ( i = 1 -> ( i + 1 ) = 2 ) |
46 |
45
|
fveq2d |
|- ( i = 1 -> ( P ` ( i + 1 ) ) = ( P ` 2 ) ) |
47 |
42 46
|
preq12d |
|- ( i = 1 -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` 1 ) , ( P ` 2 ) } ) |
48 |
47
|
eleq1d |
|- ( i = 1 -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
49 |
41 48
|
imbitrrid |
|- ( i = 1 -> ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
50 |
38 49
|
jaoi |
|- ( ( i = 0 \/ i = 1 ) -> ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
51 |
|
elpri |
|- ( i e. { 0 , 1 } -> ( i = 0 \/ i = 1 ) ) |
52 |
50 51
|
syl11 |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( i e. { 0 , 1 } -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
53 |
27 52
|
sylbid |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
54 |
53
|
ralrimiv |
|- ( ( ph /\ ( # ` P ) = 3 ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
55 |
|
ovexd |
|- ( P : ( 0 ..^ 3 ) -1-1-onto-> T -> ( 0 ..^ 3 ) e. _V ) |
56 |
10 55
|
jca |
|- ( P : ( 0 ..^ 3 ) -1-1-onto-> T -> ( P : ( 0 ..^ 3 ) --> T /\ ( 0 ..^ 3 ) e. _V ) ) |
57 |
|
fex |
|- ( ( P : ( 0 ..^ 3 ) --> T /\ ( 0 ..^ 3 ) e. _V ) -> P e. _V ) |
58 |
2 56 57
|
3syl |
|- ( ph -> P e. _V ) |
59 |
58
|
adantr |
|- ( ( ph /\ ( # ` P ) = 3 ) -> P e. _V ) |
60 |
|
lsw |
|- ( P e. _V -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
61 |
59 60
|
syl |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
62 |
22
|
fveq2d |
|- ( ( # ` P ) = 3 -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 2 ) ) |
63 |
62
|
adantl |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 2 ) ) |
64 |
61 63
|
eqtrd |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( lastS ` P ) = ( P ` 2 ) ) |
65 |
64
|
preq1d |
|- ( ( ph /\ ( # ` P ) = 3 ) -> { ( lastS ` P ) , ( P ` 0 ) } = { ( P ` 2 ) , ( P ` 0 ) } ) |
66 |
|
prcom |
|- { ( P ` 0 ) , ( P ` 2 ) } = { ( P ` 2 ) , ( P ` 0 ) } |
67 |
66
|
eleq1i |
|- ( { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) <-> { ( P ` 2 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
68 |
67
|
biimpi |
|- ( { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) -> { ( P ` 2 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
69 |
68
|
3ad2ant2 |
|- ( ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) -> { ( P ` 2 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
70 |
28 30 69
|
3syl |
|- ( ph -> { ( P ` 2 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
71 |
70
|
adantr |
|- ( ( ph /\ ( # ` P ) = 3 ) -> { ( P ` 2 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
72 |
65 71
|
eqeltrd |
|- ( ( ph /\ ( # ` P ) = 3 ) -> { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
73 |
19 54 72
|
3jca |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) |
74 |
|
simpr |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( # ` P ) = 3 ) |
75 |
73 74
|
jca |
|- ( ( ph /\ ( # ` P ) = 3 ) -> ( ( P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` P ) = 3 ) ) |
76 |
9 75
|
mpdan |
|- ( ph -> ( ( P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` P ) = 3 ) ) |
77 |
|
3nn |
|- 3 e. NN |
78 |
12 29
|
isclwwlknx |
|- ( 3 e. NN -> ( P e. ( 3 ClWWalksN G ) <-> ( ( P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` P ) = 3 ) ) ) |
79 |
77 78
|
mp1i |
|- ( ph -> ( P e. ( 3 ClWWalksN G ) <-> ( ( P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` P ) = 3 ) ) ) |
80 |
76 79
|
mpbird |
|- ( ph -> P e. ( 3 ClWWalksN G ) ) |