| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pthiswlk |
|- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
| 2 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 3 |
2
|
upgrwlkvtxedg |
|- ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> A. x e. ( 0 ..^ ( # ` F ) ) { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) ) |
| 4 |
1 3
|
sylan2 |
|- ( ( G e. UPGraph /\ F ( Paths ` G ) P ) -> A. x e. ( 0 ..^ ( # ` F ) ) { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) ) |
| 5 |
4
|
adantr |
|- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> A. x e. ( 0 ..^ ( # ` F ) ) { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) ) |
| 6 |
|
oveq2 |
|- ( ( # ` F ) = 3 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 3 ) ) |
| 7 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 8 |
6 7
|
eqtrdi |
|- ( ( # ` F ) = 3 -> ( 0 ..^ ( # ` F ) ) = { 0 , 1 , 2 } ) |
| 9 |
8
|
adantl |
|- ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ( 0 ..^ ( # ` F ) ) = { 0 , 1 , 2 } ) |
| 10 |
9
|
adantl |
|- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( 0 ..^ ( # ` F ) ) = { 0 , 1 , 2 } ) |
| 11 |
10
|
raleqdv |
|- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) <-> A. x e. { 0 , 1 , 2 } { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) ) ) |
| 12 |
|
fveq2 |
|- ( ( # ` F ) = 3 -> ( P ` ( # ` F ) ) = ( P ` 3 ) ) |
| 13 |
12
|
eqeq2d |
|- ( ( # ` F ) = 3 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) <-> ( P ` 0 ) = ( P ` 3 ) ) ) |
| 14 |
|
c0ex |
|- 0 e. _V |
| 15 |
|
1ex |
|- 1 e. _V |
| 16 |
|
2ex |
|- 2 e. _V |
| 17 |
|
fveq2 |
|- ( x = 0 -> ( P ` x ) = ( P ` 0 ) ) |
| 18 |
|
fv0p1e1 |
|- ( x = 0 -> ( P ` ( x + 1 ) ) = ( P ` 1 ) ) |
| 19 |
17 18
|
preq12d |
|- ( x = 0 -> { ( P ` x ) , ( P ` ( x + 1 ) ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 20 |
19
|
eleq1d |
|- ( x = 0 -> ( { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) ) |
| 21 |
|
fveq2 |
|- ( x = 1 -> ( P ` x ) = ( P ` 1 ) ) |
| 22 |
|
oveq1 |
|- ( x = 1 -> ( x + 1 ) = ( 1 + 1 ) ) |
| 23 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 24 |
22 23
|
eqtrdi |
|- ( x = 1 -> ( x + 1 ) = 2 ) |
| 25 |
24
|
fveq2d |
|- ( x = 1 -> ( P ` ( x + 1 ) ) = ( P ` 2 ) ) |
| 26 |
21 25
|
preq12d |
|- ( x = 1 -> { ( P ` x ) , ( P ` ( x + 1 ) ) } = { ( P ` 1 ) , ( P ` 2 ) } ) |
| 27 |
26
|
eleq1d |
|- ( x = 1 -> ( { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 28 |
|
fveq2 |
|- ( x = 2 -> ( P ` x ) = ( P ` 2 ) ) |
| 29 |
|
oveq1 |
|- ( x = 2 -> ( x + 1 ) = ( 2 + 1 ) ) |
| 30 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 31 |
29 30
|
eqtrdi |
|- ( x = 2 -> ( x + 1 ) = 3 ) |
| 32 |
31
|
fveq2d |
|- ( x = 2 -> ( P ` ( x + 1 ) ) = ( P ` 3 ) ) |
| 33 |
28 32
|
preq12d |
|- ( x = 2 -> { ( P ` x ) , ( P ` ( x + 1 ) ) } = { ( P ` 2 ) , ( P ` 3 ) } ) |
| 34 |
33
|
eleq1d |
|- ( x = 2 -> ( { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) ) |
| 35 |
14 15 16 20 27 34
|
raltp |
|- ( A. x e. { 0 , 1 , 2 } { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) <-> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) ) |
| 36 |
|
simpr1 |
|- ( ( ( P ` 0 ) = ( P ` 3 ) /\ ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) ) -> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) |
| 37 |
|
preq2 |
|- ( ( P ` 0 ) = ( P ` 3 ) -> { ( P ` 2 ) , ( P ` 0 ) } = { ( P ` 2 ) , ( P ` 3 ) } ) |
| 38 |
|
prcom |
|- { ( P ` 2 ) , ( P ` 0 ) } = { ( P ` 0 ) , ( P ` 2 ) } |
| 39 |
37 38
|
eqtr3di |
|- ( ( P ` 0 ) = ( P ` 3 ) -> { ( P ` 2 ) , ( P ` 3 ) } = { ( P ` 0 ) , ( P ` 2 ) } ) |
| 40 |
39
|
eleq1d |
|- ( ( P ` 0 ) = ( P ` 3 ) -> ( { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) <-> { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 41 |
40
|
biimpcd |
|- ( { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) -> ( ( P ` 0 ) = ( P ` 3 ) -> { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 42 |
41
|
3ad2ant3 |
|- ( ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) -> ( ( P ` 0 ) = ( P ` 3 ) -> { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 43 |
42
|
impcom |
|- ( ( ( P ` 0 ) = ( P ` 3 ) /\ ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) ) -> { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) ) |
| 44 |
|
simpr2 |
|- ( ( ( P ` 0 ) = ( P ` 3 ) /\ ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) ) -> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) |
| 45 |
36 43 44
|
3jca |
|- ( ( ( P ` 0 ) = ( P ` 3 ) /\ ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 46 |
45
|
ex |
|- ( ( P ` 0 ) = ( P ` 3 ) -> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 2 ) , ( P ` 3 ) } e. ( Edg ` G ) ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) ) |
| 47 |
35 46
|
biimtrid |
|- ( ( P ` 0 ) = ( P ` 3 ) -> ( A. x e. { 0 , 1 , 2 } { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) ) |
| 48 |
13 47
|
biimtrdi |
|- ( ( # ` F ) = 3 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( A. x e. { 0 , 1 , 2 } { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) ) ) |
| 49 |
48
|
impcom |
|- ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ( A. x e. { 0 , 1 , 2 } { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) ) |
| 50 |
49
|
adantl |
|- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( A. x e. { 0 , 1 , 2 } { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) ) |
| 51 |
11 50
|
sylbid |
|- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ( Edg ` G ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) ) |
| 52 |
5 51
|
mpd |
|- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |