Step |
Hyp |
Ref |
Expression |
1 |
|
pthiswlk |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
2 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
3 |
2
|
upgrwlkvtxedg |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
4 |
1 3
|
sylan2 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
6 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 3 ) ) |
7 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
8 |
6 7
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 , 2 } ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 , 2 } ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 , 2 } ) |
11 |
10
|
raleqdv |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑥 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
12 |
|
fveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 3 ) ) |
13 |
12
|
eqeq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ) |
14 |
|
c0ex |
⊢ 0 ∈ V |
15 |
|
1ex |
⊢ 1 ∈ V |
16 |
|
2ex |
⊢ 2 ∈ V |
17 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 0 ) ) |
18 |
|
fv0p1e1 |
⊢ ( 𝑥 = 0 → ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 1 ) ) |
19 |
17 18
|
preq12d |
⊢ ( 𝑥 = 0 → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
20 |
19
|
eleq1d |
⊢ ( 𝑥 = 0 → ( { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 1 ) ) |
22 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 + 1 ) = ( 1 + 1 ) ) |
23 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
24 |
22 23
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( 𝑥 + 1 ) = 2 ) |
25 |
24
|
fveq2d |
⊢ ( 𝑥 = 1 → ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 2 ) ) |
26 |
21 25
|
preq12d |
⊢ ( 𝑥 = 1 → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
27 |
26
|
eleq1d |
⊢ ( 𝑥 = 1 → ( { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
28 |
|
fveq2 |
⊢ ( 𝑥 = 2 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 2 ) ) |
29 |
|
oveq1 |
⊢ ( 𝑥 = 2 → ( 𝑥 + 1 ) = ( 2 + 1 ) ) |
30 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
31 |
29 30
|
eqtrdi |
⊢ ( 𝑥 = 2 → ( 𝑥 + 1 ) = 3 ) |
32 |
31
|
fveq2d |
⊢ ( 𝑥 = 2 → ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 3 ) ) |
33 |
28 32
|
preq12d |
⊢ ( 𝑥 = 2 → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ) |
34 |
33
|
eleq1d |
⊢ ( 𝑥 = 2 → ( { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
35 |
14 15 16 20 27 34
|
raltp |
⊢ ( ∀ 𝑥 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
36 |
|
simpr1 |
⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) |
37 |
|
preq2 |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ) |
38 |
|
prcom |
⊢ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } |
39 |
37 38
|
eqtr3di |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ) |
40 |
39
|
eleq1d |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → ( { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
41 |
40
|
biimpcd |
⊢ ( { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
42 |
41
|
3ad2ant3 |
⊢ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
43 |
42
|
impcom |
⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) |
44 |
|
simpr2 |
⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) |
45 |
36 43 44
|
3jca |
⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
46 |
45
|
ex |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
47 |
35 46
|
biimtrid |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → ( ∀ 𝑥 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
48 |
13 47
|
biimtrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑥 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
49 |
48
|
impcom |
⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( ∀ 𝑥 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
50 |
49
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ∀ 𝑥 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
51 |
11 50
|
sylbid |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
52 |
5 51
|
mpd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |