| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycl3grtri.g |
⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) |
| 2 |
|
cycl3grtri.c |
⊢ ( 𝜑 → 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) |
| 3 |
|
cycl3grtri.n |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) = 3 ) |
| 4 |
|
cyclprop |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 5 |
|
tpeq1 |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → { 𝑥 , 𝑦 , 𝑧 } = { ( 𝑃 ‘ 0 ) , 𝑦 , 𝑧 } ) |
| 6 |
5
|
eqeq2d |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( ran 𝑃 = { 𝑥 , 𝑦 , 𝑧 } ↔ ran 𝑃 = { ( 𝑃 ‘ 0 ) , 𝑦 , 𝑧 } ) ) |
| 7 |
|
preq1 |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → { 𝑥 , 𝑦 } = { ( 𝑃 ‘ 0 ) , 𝑦 } ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 0 ) , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 9 |
|
preq1 |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → { 𝑥 , 𝑧 } = { ( 𝑃 ‘ 0 ) , 𝑧 } ) |
| 10 |
9
|
eleq1d |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 11 |
8 10
|
3anbi12d |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( { ( 𝑃 ‘ 0 ) , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 12 |
6 11
|
3anbi13d |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( ( ran 𝑃 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ↔ ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { ( 𝑃 ‘ 0 ) , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
| 13 |
|
tpeq2 |
⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → { ( 𝑃 ‘ 0 ) , 𝑦 , 𝑧 } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , 𝑧 } ) |
| 14 |
13
|
eqeq2d |
⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , 𝑦 , 𝑧 } ↔ ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , 𝑧 } ) ) |
| 15 |
|
preq2 |
⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → { ( 𝑃 ‘ 0 ) , 𝑦 } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
| 16 |
15
|
eleq1d |
⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → ( { ( 𝑃 ‘ 0 ) , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 17 |
|
preq1 |
⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → { 𝑦 , 𝑧 } = { ( 𝑃 ‘ 1 ) , 𝑧 } ) |
| 18 |
17
|
eleq1d |
⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → ( { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 1 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 19 |
16 18
|
3anbi13d |
⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → ( ( { ( 𝑃 ‘ 0 ) , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 20 |
14 19
|
3anbi13d |
⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → ( ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { ( 𝑃 ‘ 0 ) , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ↔ ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , 𝑧 } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
| 21 |
|
tpeq3 |
⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , 𝑧 } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 22 |
21
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , 𝑧 } ↔ ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 23 |
|
preq2 |
⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → { ( 𝑃 ‘ 0 ) , 𝑧 } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ) |
| 24 |
23
|
eleq1d |
⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → ( { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 25 |
|
preq2 |
⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → { ( 𝑃 ‘ 1 ) , 𝑧 } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 26 |
25
|
eleq1d |
⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → ( { ( 𝑃 ‘ 1 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 27 |
24 26
|
3anbi23d |
⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 28 |
22 27
|
3anbi13d |
⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → ( ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , 𝑧 } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ↔ ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
| 29 |
|
pthiswlk |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 30 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 31 |
30
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 32 |
|
simpl |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 33 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 34 |
|
0elfz |
⊢ ( 3 ∈ ℕ0 → 0 ∈ ( 0 ... 3 ) ) |
| 35 |
33 34
|
ax-mp |
⊢ 0 ∈ ( 0 ... 3 ) |
| 36 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 3 ) ) |
| 37 |
35 36
|
eleqtrrid |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 38 |
37
|
ad2antll |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 39 |
32 38
|
ffvelcdmd |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 40 |
39
|
ex |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 41 |
29 31 40
|
3syl |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 43 |
42
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 44 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 45 |
|
1le3 |
⊢ 1 ≤ 3 |
| 46 |
|
elfz2nn0 |
⊢ ( 1 ∈ ( 0 ... 3 ) ↔ ( 1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3 ) ) |
| 47 |
44 33 45 46
|
mpbir3an |
⊢ 1 ∈ ( 0 ... 3 ) |
| 48 |
47 36
|
eleqtrrid |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → 1 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 49 |
48
|
ad2antll |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → 1 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 50 |
32 49
|
ffvelcdmd |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 51 |
50
|
ex |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 52 |
29 31 51
|
3syl |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 54 |
53
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 55 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 56 |
|
2re |
⊢ 2 ∈ ℝ |
| 57 |
|
3re |
⊢ 3 ∈ ℝ |
| 58 |
|
2lt3 |
⊢ 2 < 3 |
| 59 |
56 57 58
|
ltleii |
⊢ 2 ≤ 3 |
| 60 |
|
elfz2nn0 |
⊢ ( 2 ∈ ( 0 ... 3 ) ↔ ( 2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3 ) ) |
| 61 |
55 33 59 60
|
mpbir3an |
⊢ 2 ∈ ( 0 ... 3 ) |
| 62 |
61 36
|
eleqtrrid |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → 2 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 63 |
62
|
ad2antll |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → 2 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 64 |
32 63
|
ffvelcdmd |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 ‘ 2 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 65 |
64
|
ex |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 2 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 66 |
29 31 65
|
3syl |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 2 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 2 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 68 |
67
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 ‘ 2 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 69 |
|
fdm |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 70 |
|
elnn0uz |
⊢ ( 3 ∈ ℕ0 ↔ 3 ∈ ( ℤ≥ ‘ 0 ) ) |
| 71 |
33 70
|
mpbi |
⊢ 3 ∈ ( ℤ≥ ‘ 0 ) |
| 72 |
|
fzisfzounsn |
⊢ ( 3 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... 3 ) = ( ( 0 ..^ 3 ) ∪ { 3 } ) ) |
| 73 |
71 72
|
ax-mp |
⊢ ( 0 ... 3 ) = ( ( 0 ..^ 3 ) ∪ { 3 } ) |
| 74 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 75 |
74
|
uneq1i |
⊢ ( ( 0 ..^ 3 ) ∪ { 3 } ) = ( { 0 , 1 , 2 } ∪ { 3 } ) |
| 76 |
73 75
|
eqtri |
⊢ ( 0 ... 3 ) = ( { 0 , 1 , 2 } ∪ { 3 } ) |
| 77 |
36 76
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( { 0 , 1 , 2 } ∪ { 3 } ) ) |
| 78 |
77
|
adantl |
⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( { 0 , 1 , 2 } ∪ { 3 } ) ) |
| 79 |
69 78
|
sylan9eq |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → dom 𝑃 = ( { 0 , 1 , 2 } ∪ { 3 } ) ) |
| 80 |
79
|
imaeq2d |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 “ dom 𝑃 ) = ( 𝑃 “ ( { 0 , 1 , 2 } ∪ { 3 } ) ) ) |
| 81 |
|
imadmrn |
⊢ ( 𝑃 “ dom 𝑃 ) = ran 𝑃 |
| 82 |
|
imaundi |
⊢ ( 𝑃 “ ( { 0 , 1 , 2 } ∪ { 3 } ) ) = ( ( 𝑃 “ { 0 , 1 , 2 } ) ∪ ( 𝑃 “ { 3 } ) ) |
| 83 |
80 81 82
|
3eqtr3g |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ran 𝑃 = ( ( 𝑃 “ { 0 , 1 , 2 } ) ∪ ( 𝑃 “ { 3 } ) ) ) |
| 84 |
|
ffn |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 85 |
84
|
adantr |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 86 |
85 38 49 63
|
fnimatpd |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 “ { 0 , 1 , 2 } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 87 |
|
nn0fz0 |
⊢ ( 3 ∈ ℕ0 ↔ 3 ∈ ( 0 ... 3 ) ) |
| 88 |
33 87
|
mpbi |
⊢ 3 ∈ ( 0 ... 3 ) |
| 89 |
88 36
|
eleqtrrid |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → 3 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 90 |
89
|
adantl |
⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → 3 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 91 |
|
fnsnfv |
⊢ ( ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 3 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → { ( 𝑃 ‘ 3 ) } = ( 𝑃 “ { 3 } ) ) |
| 92 |
84 90 91
|
syl2an |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → { ( 𝑃 ‘ 3 ) } = ( 𝑃 “ { 3 } ) ) |
| 93 |
92
|
eqcomd |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 “ { 3 } ) = { ( 𝑃 ‘ 3 ) } ) |
| 94 |
86 93
|
uneq12d |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ( 𝑃 “ { 0 , 1 , 2 } ) ∪ ( 𝑃 “ { 3 } ) ) = ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 3 ) } ) ) |
| 95 |
|
fveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 3 ) ) |
| 96 |
95
|
eqeq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ) |
| 97 |
|
sneq |
⊢ ( ( 𝑃 ‘ 3 ) = ( 𝑃 ‘ 0 ) → { ( 𝑃 ‘ 3 ) } = { ( 𝑃 ‘ 0 ) } ) |
| 98 |
97
|
eqcoms |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → { ( 𝑃 ‘ 3 ) } = { ( 𝑃 ‘ 0 ) } ) |
| 99 |
98
|
uneq2d |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 3 ) } ) = ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 0 ) } ) ) |
| 100 |
|
snsstp1 |
⊢ { ( 𝑃 ‘ 0 ) } ⊆ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } |
| 101 |
100
|
a1i |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → { ( 𝑃 ‘ 0 ) } ⊆ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 102 |
|
ssequn2 |
⊢ ( { ( 𝑃 ‘ 0 ) } ⊆ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 0 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 103 |
101 102
|
sylib |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 0 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 104 |
99 103
|
eqtrd |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 3 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 105 |
96 104
|
biimtrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 3 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 106 |
105
|
impcom |
⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 3 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 107 |
106
|
adantl |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 3 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 108 |
83 94 107
|
3eqtrd |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 109 |
108
|
ex |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 110 |
29 31 109
|
3syl |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 111 |
110
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 112 |
111
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 113 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 1 ≤ ( ♯ ‘ 𝐹 ) ↔ 1 ≤ 3 ) ) |
| 114 |
45 113
|
mpbiri |
⊢ ( ( ♯ ‘ 𝐹 ) = 3 → 1 ≤ ( ♯ ‘ 𝐹 ) ) |
| 115 |
114
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → 1 ≤ ( ♯ ‘ 𝐹 ) ) |
| 116 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) |
| 117 |
|
cyclnumvtx |
⊢ ( ( 1 ≤ ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ ran 𝑃 ) = ( ♯ ‘ 𝐹 ) ) |
| 118 |
115 116 117
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ♯ ‘ ran 𝑃 ) = ( ♯ ‘ 𝐹 ) ) |
| 119 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ♯ ‘ 𝐹 ) = 3 ) |
| 120 |
118 119
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ♯ ‘ ran 𝑃 ) = 3 ) |
| 121 |
|
cycl3grtrilem |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 122 |
1 121
|
sylanl1 |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 123 |
112 120 122
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 124 |
12 20 28 43 54 68 123
|
3rspcedvdw |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐺 ) ( ran 𝑃 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 125 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 126 |
30 125
|
isgrtri |
⊢ ( ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐺 ) ( ran 𝑃 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 127 |
124 126
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) |
| 128 |
127
|
exp32 |
⊢ ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) = 3 → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) ) ) |
| 129 |
128
|
com23 |
⊢ ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) ) ) |
| 130 |
129
|
expcom |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝜑 → ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) ) ) ) |
| 131 |
130
|
com24 |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) = 3 → ( 𝜑 → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) ) ) ) |
| 132 |
131
|
imp |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ 𝐹 ) = 3 → ( 𝜑 → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) ) ) |
| 133 |
4 132
|
syl |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ( ♯ ‘ 𝐹 ) = 3 → ( 𝜑 → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) ) ) |
| 134 |
133
|
com13 |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐹 ) = 3 → ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) ) ) |
| 135 |
3 2 134
|
mp2d |
⊢ ( 𝜑 → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) |