| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnimatpd.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
| 2 |
|
fnimatpd.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
| 3 |
|
fnimatpd.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
| 4 |
|
fnimatpd.4 |
⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
| 5 |
|
fnimapr |
⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐹 “ { 𝐴 , 𝐵 } ) = { ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) } ) |
| 6 |
1 2 3 5
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 “ { 𝐴 , 𝐵 } ) = { ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) } ) |
| 7 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝐶 ∈ 𝐷 ) → { ( 𝐹 ‘ 𝐶 ) } = ( 𝐹 “ { 𝐶 } ) ) |
| 8 |
1 4 7
|
syl2anc |
⊢ ( 𝜑 → { ( 𝐹 ‘ 𝐶 ) } = ( 𝐹 “ { 𝐶 } ) ) |
| 9 |
8
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 “ { 𝐶 } ) = { ( 𝐹 ‘ 𝐶 ) } ) |
| 10 |
6 9
|
uneq12d |
⊢ ( 𝜑 → ( ( 𝐹 “ { 𝐴 , 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) ) = ( { ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) } ∪ { ( 𝐹 ‘ 𝐶 ) } ) ) |
| 11 |
|
df-tp |
⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) |
| 12 |
11
|
imaeq2i |
⊢ ( 𝐹 “ { 𝐴 , 𝐵 , 𝐶 } ) = ( 𝐹 “ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) |
| 13 |
|
imaundi |
⊢ ( 𝐹 “ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) = ( ( 𝐹 “ { 𝐴 , 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) ) |
| 14 |
12 13
|
eqtri |
⊢ ( 𝐹 “ { 𝐴 , 𝐵 , 𝐶 } ) = ( ( 𝐹 “ { 𝐴 , 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) ) |
| 15 |
|
df-tp |
⊢ { ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐶 ) } = ( { ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) } ∪ { ( 𝐹 ‘ 𝐶 ) } ) |
| 16 |
10 14 15
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐹 “ { 𝐴 , 𝐵 , 𝐶 } ) = { ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐶 ) } ) |