Step |
Hyp |
Ref |
Expression |
0 |
|
cgrtri |
|- GrTriangles |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
cvtx |
|- Vtx |
4 |
1
|
cv |
|- g |
5 |
4 3
|
cfv |
|- ( Vtx ` g ) |
6 |
|
vv |
|- v |
7 |
|
cedg |
|- Edg |
8 |
4 7
|
cfv |
|- ( Edg ` g ) |
9 |
|
ve |
|- e |
10 |
|
vt |
|- t |
11 |
6
|
cv |
|- v |
12 |
11
|
cpw |
|- ~P v |
13 |
|
vf |
|- f |
14 |
13
|
cv |
|- f |
15 |
|
cc0 |
|- 0 |
16 |
|
cfzo |
|- ..^ |
17 |
|
c3 |
|- 3 |
18 |
15 17 16
|
co |
|- ( 0 ..^ 3 ) |
19 |
10
|
cv |
|- t |
20 |
18 19 14
|
wf1o |
|- f : ( 0 ..^ 3 ) -1-1-onto-> t |
21 |
15 14
|
cfv |
|- ( f ` 0 ) |
22 |
|
c1 |
|- 1 |
23 |
22 14
|
cfv |
|- ( f ` 1 ) |
24 |
21 23
|
cpr |
|- { ( f ` 0 ) , ( f ` 1 ) } |
25 |
9
|
cv |
|- e |
26 |
24 25
|
wcel |
|- { ( f ` 0 ) , ( f ` 1 ) } e. e |
27 |
|
c2 |
|- 2 |
28 |
27 14
|
cfv |
|- ( f ` 2 ) |
29 |
21 28
|
cpr |
|- { ( f ` 0 ) , ( f ` 2 ) } |
30 |
29 25
|
wcel |
|- { ( f ` 0 ) , ( f ` 2 ) } e. e |
31 |
23 28
|
cpr |
|- { ( f ` 1 ) , ( f ` 2 ) } |
32 |
31 25
|
wcel |
|- { ( f ` 1 ) , ( f ` 2 ) } e. e |
33 |
26 30 32
|
w3a |
|- ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) |
34 |
20 33
|
wa |
|- ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) |
35 |
34 13
|
wex |
|- E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) |
36 |
35 10 12
|
crab |
|- { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } |
37 |
9 8 36
|
csb |
|- [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } |
38 |
6 5 37
|
csb |
|- [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } |
39 |
1 2 38
|
cmpt |
|- ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) |
40 |
0 39
|
wceq |
|- GrTriangles = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) |