| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cgrtri |  |-  GrTriangles | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | cvtx |  |-  Vtx | 
						
							| 4 | 1 | cv |  |-  g | 
						
							| 5 | 4 3 | cfv |  |-  ( Vtx ` g ) | 
						
							| 6 |  | vv |  |-  v | 
						
							| 7 |  | cedg |  |-  Edg | 
						
							| 8 | 4 7 | cfv |  |-  ( Edg ` g ) | 
						
							| 9 |  | ve |  |-  e | 
						
							| 10 |  | vt |  |-  t | 
						
							| 11 | 6 | cv |  |-  v | 
						
							| 12 | 11 | cpw |  |-  ~P v | 
						
							| 13 |  | vf |  |-  f | 
						
							| 14 | 13 | cv |  |-  f | 
						
							| 15 |  | cc0 |  |-  0 | 
						
							| 16 |  | cfzo |  |-  ..^ | 
						
							| 17 |  | c3 |  |-  3 | 
						
							| 18 | 15 17 16 | co |  |-  ( 0 ..^ 3 ) | 
						
							| 19 | 10 | cv |  |-  t | 
						
							| 20 | 18 19 14 | wf1o |  |-  f : ( 0 ..^ 3 ) -1-1-onto-> t | 
						
							| 21 | 15 14 | cfv |  |-  ( f ` 0 ) | 
						
							| 22 |  | c1 |  |-  1 | 
						
							| 23 | 22 14 | cfv |  |-  ( f ` 1 ) | 
						
							| 24 | 21 23 | cpr |  |-  { ( f ` 0 ) , ( f ` 1 ) } | 
						
							| 25 | 9 | cv |  |-  e | 
						
							| 26 | 24 25 | wcel |  |-  { ( f ` 0 ) , ( f ` 1 ) } e. e | 
						
							| 27 |  | c2 |  |-  2 | 
						
							| 28 | 27 14 | cfv |  |-  ( f ` 2 ) | 
						
							| 29 | 21 28 | cpr |  |-  { ( f ` 0 ) , ( f ` 2 ) } | 
						
							| 30 | 29 25 | wcel |  |-  { ( f ` 0 ) , ( f ` 2 ) } e. e | 
						
							| 31 | 23 28 | cpr |  |-  { ( f ` 1 ) , ( f ` 2 ) } | 
						
							| 32 | 31 25 | wcel |  |-  { ( f ` 1 ) , ( f ` 2 ) } e. e | 
						
							| 33 | 26 30 32 | w3a |  |-  ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) | 
						
							| 34 | 20 33 | wa |  |-  ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) | 
						
							| 35 | 34 13 | wex |  |-  E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) | 
						
							| 36 | 35 10 12 | crab |  |-  { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } | 
						
							| 37 | 9 8 36 | csb |  |-  [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } | 
						
							| 38 | 6 5 37 | csb |  |-  [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } | 
						
							| 39 | 1 2 38 | cmpt |  |-  ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) | 
						
							| 40 | 0 39 | wceq |  |-  GrTriangles = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) |