Step |
Hyp |
Ref |
Expression |
1 |
|
grtri.v |
|
2 |
|
grtri.e |
|
3 |
|
df-grtri |
Could not format GrTriangles = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) : No typesetting found for |- GrTriangles = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) with typecode |- |
4 |
3
|
a1i |
Could not format ( G e. W -> GrTriangles = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) ) : No typesetting found for |- ( G e. W -> GrTriangles = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) ) with typecode |- |
5 |
|
fveq2 |
|
6 |
5 1
|
eqtr4di |
|
7 |
|
fveq2 |
|
8 |
7 2
|
eqtr4di |
|
9 |
8
|
csbeq1d |
|
10 |
6 9
|
csbeq12dv |
|
11 |
10
|
adantl |
|
12 |
1
|
fvexi |
|
13 |
2
|
fvexi |
|
14 |
|
pweq |
|
15 |
14
|
adantr |
|
16 |
|
eleq2 |
|
17 |
|
eleq2 |
|
18 |
|
eleq2 |
|
19 |
16 17 18
|
3anbi123d |
|
20 |
19
|
anbi2d |
|
21 |
20
|
exbidv |
|
22 |
21
|
adantl |
|
23 |
15 22
|
rabeqbidv |
|
24 |
12 13 23
|
csbie2 |
|
25 |
11 24
|
eqtrdi |
|
26 |
|
elex |
|
27 |
1
|
pweqi |
|
28 |
|
fvex |
|
29 |
28
|
pwex |
|
30 |
27 29
|
eqeltri |
|
31 |
30
|
rabex |
|
32 |
31
|
a1i |
|
33 |
4 25 26 32
|
fvmptd |
Could not format ( G e. W -> ( GrTriangles ` G ) = { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) : No typesetting found for |- ( G e. W -> ( GrTriangles ` G ) = { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) with typecode |- |