Metamath Proof Explorer


Theorem usgrlimprop

Description: Properties of a local isomorphism of simple pseudographs. (Contributed by AV, 17-Aug-2025)

Ref Expression
Hypotheses usgrlimprop.v V = Vtx G
usgrlimprop.w W = Vtx H
usgrlimprop.n N = G ClNeighbVtx v
usgrlimprop.m M = H ClNeighbVtx F v
usgrlimprop.i I = Edg G
usgrlimprop.j J = Edg H
usgrlimprop.k K = x I | x N
usgrlimprop.l L = x J | x M
Assertion usgrlimprop G USHGraph H USHGraph F G GraphLocIso H F : V 1-1 onto W v V f f : N 1-1 onto M g g : K 1-1 onto L e K f e = g e

Proof

Step Hyp Ref Expression
1 usgrlimprop.v V = Vtx G
2 usgrlimprop.w W = Vtx H
3 usgrlimprop.n N = G ClNeighbVtx v
4 usgrlimprop.m M = H ClNeighbVtx F v
5 usgrlimprop.i I = Edg G
6 usgrlimprop.j J = Edg H
7 usgrlimprop.k K = x I | x N
8 usgrlimprop.l L = x J | x M
9 simp3 G USHGraph H USHGraph F G GraphLocIso H F G GraphLocIso H
10 1 2 3 4 5 6 7 8 uspgrlim G USHGraph H USHGraph F G GraphLocIso H F G GraphLocIso H F : V 1-1 onto W v V f f : N 1-1 onto M g g : K 1-1 onto L e K f e = g e
11 9 10 mpbid G USHGraph H USHGraph F G GraphLocIso H F : V 1-1 onto W v V f f : N 1-1 onto M g g : K 1-1 onto L e K f e = g e