Metamath Proof Explorer


Theorem clnbgrvtxedg

Description: An edge E containing a vertex A is an edge in the closed neighborhood of this vertex A . (Contributed by AV, 25-Dec-2025)

Ref Expression
Hypotheses clnbgrvtxedg.n N = G ClNeighbVtx A
clnbgrvtxedg.i I = Edg G
clnbgrvtxedg.k K = x I | x N
Assertion clnbgrvtxedg G UHGraph E I A E E K

Proof

Step Hyp Ref Expression
1 clnbgrvtxedg.n N = G ClNeighbVtx A
2 clnbgrvtxedg.i I = Edg G
3 clnbgrvtxedg.k K = x I | x N
4 simp2 G UHGraph E I A E E I
5 2 1 clnbgrssedg G UHGraph E I A E E N
6 sseq1 x = E x N E N
7 6 3 elrab2 E K E I E N
8 4 5 7 sylanbrc G UHGraph E I A E E K