Description: An edge E containing a vertex A is an edge in the closed neighborhood of this vertex A . (Contributed by AV, 25-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrvtxedg.n | |- N = ( G ClNeighbVtx A ) |
|
| clnbgrvtxedg.i | |- I = ( Edg ` G ) |
||
| clnbgrvtxedg.k | |- K = { x e. I | x C_ N } |
||
| Assertion | clnbgrvtxedg | |- ( ( G e. UHGraph /\ E e. I /\ A e. E ) -> E e. K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxedg.n | |- N = ( G ClNeighbVtx A ) |
|
| 2 | clnbgrvtxedg.i | |- I = ( Edg ` G ) |
|
| 3 | clnbgrvtxedg.k | |- K = { x e. I | x C_ N } |
|
| 4 | simp2 | |- ( ( G e. UHGraph /\ E e. I /\ A e. E ) -> E e. I ) |
|
| 5 | 2 1 | clnbgrssedg | |- ( ( G e. UHGraph /\ E e. I /\ A e. E ) -> E C_ N ) |
| 6 | sseq1 | |- ( x = E -> ( x C_ N <-> E C_ N ) ) |
|
| 7 | 6 3 | elrab2 | |- ( E e. K <-> ( E e. I /\ E C_ N ) ) |
| 8 | 4 5 7 | sylanbrc | |- ( ( G e. UHGraph /\ E e. I /\ A e. E ) -> E e. K ) |