| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clnbgrvtxedg.n |
|- N = ( G ClNeighbVtx A ) |
| 2 |
|
clnbgrvtxedg.i |
|- I = ( Edg ` G ) |
| 3 |
|
clnbgrvtxedg.k |
|- K = { x e. I | x C_ N } |
| 4 |
|
grlimedgclnbgr.m |
|- M = ( H ClNeighbVtx ( F ` A ) ) |
| 5 |
|
grlimedgclnbgr.j |
|- J = ( Edg ` H ) |
| 6 |
|
grlimedgclnbgr.l |
|- L = { x e. J | x C_ M } |
| 7 |
|
simp1l |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> G e. USPGraph ) |
| 8 |
|
simp1r |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> H e. USPGraph ) |
| 9 |
|
simp2 |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> F e. ( G GraphLocIso H ) ) |
| 10 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 11 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
| 12 |
|
eqid |
|- ( G ClNeighbVtx v ) = ( G ClNeighbVtx v ) |
| 13 |
|
eqid |
|- ( H ClNeighbVtx ( F ` v ) ) = ( H ClNeighbVtx ( F ` v ) ) |
| 14 |
|
sseq1 |
|- ( x = y -> ( x C_ ( G ClNeighbVtx v ) <-> y C_ ( G ClNeighbVtx v ) ) ) |
| 15 |
14
|
cbvrabv |
|- { x e. I | x C_ ( G ClNeighbVtx v ) } = { y e. I | y C_ ( G ClNeighbVtx v ) } |
| 16 |
|
sseq1 |
|- ( x = y -> ( x C_ ( H ClNeighbVtx ( F ` v ) ) <-> y C_ ( H ClNeighbVtx ( F ` v ) ) ) ) |
| 17 |
16
|
cbvrabv |
|- { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } = { y e. J | y C_ ( H ClNeighbVtx ( F ` v ) ) } |
| 18 |
10 11 12 13 2 5 15 17
|
usgrlimprop |
|- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. ( G GraphLocIso H ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) ) ) |
| 19 |
7 8 9 18
|
syl3anc |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) ) ) |
| 20 |
|
uspgruhgr |
|- ( G e. USPGraph -> G e. UHGraph ) |
| 21 |
20
|
adantr |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> G e. UHGraph ) |
| 22 |
21
|
3ad2ant1 |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> G e. UHGraph ) |
| 23 |
2
|
eleq2i |
|- ( E e. I <-> E e. ( Edg ` G ) ) |
| 24 |
23
|
biimpi |
|- ( E e. I -> E e. ( Edg ` G ) ) |
| 25 |
24
|
adantr |
|- ( ( E e. I /\ A e. E ) -> E e. ( Edg ` G ) ) |
| 26 |
25
|
3ad2ant3 |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> E e. ( Edg ` G ) ) |
| 27 |
|
simp3r |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> A e. E ) |
| 28 |
|
uhgredgrnv |
|- ( ( G e. UHGraph /\ E e. ( Edg ` G ) /\ A e. E ) -> A e. ( Vtx ` G ) ) |
| 29 |
22 26 27 28
|
syl3anc |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> A e. ( Vtx ` G ) ) |
| 30 |
|
eqidd |
|- ( v = A -> f = f ) |
| 31 |
|
oveq2 |
|- ( v = A -> ( G ClNeighbVtx v ) = ( G ClNeighbVtx A ) ) |
| 32 |
|
fveq2 |
|- ( v = A -> ( F ` v ) = ( F ` A ) ) |
| 33 |
32
|
oveq2d |
|- ( v = A -> ( H ClNeighbVtx ( F ` v ) ) = ( H ClNeighbVtx ( F ` A ) ) ) |
| 34 |
30 31 33
|
f1oeq123d |
|- ( v = A -> ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) <-> f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) ) |
| 35 |
|
eqidd |
|- ( v = A -> g = g ) |
| 36 |
31
|
sseq2d |
|- ( v = A -> ( x C_ ( G ClNeighbVtx v ) <-> x C_ ( G ClNeighbVtx A ) ) ) |
| 37 |
36
|
rabbidv |
|- ( v = A -> { x e. I | x C_ ( G ClNeighbVtx v ) } = { x e. I | x C_ ( G ClNeighbVtx A ) } ) |
| 38 |
33
|
sseq2d |
|- ( v = A -> ( x C_ ( H ClNeighbVtx ( F ` v ) ) <-> x C_ ( H ClNeighbVtx ( F ` A ) ) ) ) |
| 39 |
38
|
rabbidv |
|- ( v = A -> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } = { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) |
| 40 |
35 37 39
|
f1oeq123d |
|- ( v = A -> ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } <-> g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) ) |
| 41 |
37
|
raleqdv |
|- ( v = A -> ( A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) <-> A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) |
| 42 |
40 41
|
anbi12d |
|- ( v = A -> ( ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) <-> ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) ) |
| 43 |
42
|
exbidv |
|- ( v = A -> ( E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) <-> E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) ) |
| 44 |
34 43
|
anbi12d |
|- ( v = A -> ( ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) <-> ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) ) ) |
| 45 |
44
|
exbidv |
|- ( v = A -> ( E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) <-> E. f ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) ) ) |
| 46 |
45
|
rspcv |
|- ( A e. ( Vtx ` G ) -> ( A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) -> E. f ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) ) ) |
| 47 |
29 46
|
syl |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) -> E. f ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) ) ) |
| 48 |
|
eqid |
|- f = f |
| 49 |
|
id |
|- ( f = f -> f = f ) |
| 50 |
1
|
a1i |
|- ( f = f -> N = ( G ClNeighbVtx A ) ) |
| 51 |
4
|
a1i |
|- ( f = f -> M = ( H ClNeighbVtx ( F ` A ) ) ) |
| 52 |
49 50 51
|
f1oeq123d |
|- ( f = f -> ( f : N -1-1-onto-> M <-> f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) ) |
| 53 |
48 52
|
ax-mp |
|- ( f : N -1-1-onto-> M <-> f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) |
| 54 |
53
|
biimpri |
|- ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) -> f : N -1-1-onto-> M ) |
| 55 |
54
|
adantl |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> f : N -1-1-onto-> M ) |
| 56 |
55
|
adantr |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) -> f : N -1-1-onto-> M ) |
| 57 |
|
eqid |
|- g = g |
| 58 |
|
id |
|- ( g = g -> g = g ) |
| 59 |
1
|
sseq2i |
|- ( x C_ N <-> x C_ ( G ClNeighbVtx A ) ) |
| 60 |
3 59
|
rabbieq |
|- K = { x e. I | x C_ ( G ClNeighbVtx A ) } |
| 61 |
60
|
a1i |
|- ( g = g -> K = { x e. I | x C_ ( G ClNeighbVtx A ) } ) |
| 62 |
4
|
sseq2i |
|- ( x C_ M <-> x C_ ( H ClNeighbVtx ( F ` A ) ) ) |
| 63 |
6 62
|
rabbieq |
|- L = { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } |
| 64 |
63
|
a1i |
|- ( g = g -> L = { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) |
| 65 |
58 61 64
|
f1oeq123d |
|- ( g = g -> ( g : K -1-1-onto-> L <-> g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) ) |
| 66 |
57 65
|
ax-mp |
|- ( g : K -1-1-onto-> L <-> g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } ) |
| 67 |
66
|
biimpri |
|- ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } -> g : K -1-1-onto-> L ) |
| 68 |
67
|
adantr |
|- ( ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) -> g : K -1-1-onto-> L ) |
| 69 |
68
|
adantl |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) -> g : K -1-1-onto-> L ) |
| 70 |
|
simp3l |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> E e. I ) |
| 71 |
|
eqid |
|- ( G ClNeighbVtx A ) = ( G ClNeighbVtx A ) |
| 72 |
|
eqid |
|- { x e. I | x C_ ( G ClNeighbVtx A ) } = { x e. I | x C_ ( G ClNeighbVtx A ) } |
| 73 |
71 2 72
|
clnbgrvtxedg |
|- ( ( G e. UHGraph /\ E e. I /\ A e. E ) -> E e. { x e. I | x C_ ( G ClNeighbVtx A ) } ) |
| 74 |
22 70 27 73
|
syl3anc |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> E e. { x e. I | x C_ ( G ClNeighbVtx A ) } ) |
| 75 |
|
imaeq2 |
|- ( e = E -> ( f " e ) = ( f " E ) ) |
| 76 |
|
fveq2 |
|- ( e = E -> ( g ` e ) = ( g ` E ) ) |
| 77 |
75 76
|
eqeq12d |
|- ( e = E -> ( ( f " e ) = ( g ` e ) <-> ( f " E ) = ( g ` E ) ) ) |
| 78 |
77
|
rspcv |
|- ( E e. { x e. I | x C_ ( G ClNeighbVtx A ) } -> ( A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) -> ( f " E ) = ( g ` E ) ) ) |
| 79 |
74 78
|
syl |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) -> ( f " E ) = ( g ` E ) ) ) |
| 80 |
79
|
adantld |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) -> ( f " E ) = ( g ` E ) ) ) |
| 81 |
80
|
adantr |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) -> ( f " E ) = ( g ` E ) ) ) |
| 82 |
81
|
imp |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) -> ( f " E ) = ( g ` E ) ) |
| 83 |
56 69 82
|
3jca |
|- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) /\ ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) -> ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) |
| 84 |
83
|
ex |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) -> ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) ) |
| 85 |
84
|
eximdv |
|- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) /\ f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) ) -> ( E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) -> E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) ) |
| 86 |
85
|
expimpd |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) -> E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) ) |
| 87 |
86
|
eximdv |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( E. f ( f : ( G ClNeighbVtx A ) -1-1-onto-> ( H ClNeighbVtx ( F ` A ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx A ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` A ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx A ) } ( f " e ) = ( g ` e ) ) ) -> E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) ) |
| 88 |
47 87
|
syld |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) -> E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) ) |
| 89 |
88
|
adantld |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> ( ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) E. f ( f : ( G ClNeighbVtx v ) -1-1-onto-> ( H ClNeighbVtx ( F ` v ) ) /\ E. g ( g : { x e. I | x C_ ( G ClNeighbVtx v ) } -1-1-onto-> { x e. J | x C_ ( H ClNeighbVtx ( F ` v ) ) } /\ A. e e. { x e. I | x C_ ( G ClNeighbVtx v ) } ( f " e ) = ( g ` e ) ) ) ) -> E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) ) |
| 90 |
19 89
|
mpd |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( E e. I /\ A e. E ) ) -> E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ ( f " E ) = ( g ` E ) ) ) |