Step |
Hyp |
Ref |
Expression |
1 |
|
usgrlimprop.v |
|- V = ( Vtx ` G ) |
2 |
|
usgrlimprop.w |
|- W = ( Vtx ` H ) |
3 |
|
usgrlimprop.n |
|- N = ( G ClNeighbVtx v ) |
4 |
|
usgrlimprop.m |
|- M = ( H ClNeighbVtx ( F ` v ) ) |
5 |
|
usgrlimprop.i |
|- I = ( Edg ` G ) |
6 |
|
usgrlimprop.j |
|- J = ( Edg ` H ) |
7 |
|
usgrlimprop.k |
|- K = { x e. I | x C_ N } |
8 |
|
usgrlimprop.l |
|- L = { x e. J | x C_ M } |
9 |
|
simp3 |
|- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. ( G GraphLocIso H ) ) -> F e. ( G GraphLocIso H ) ) |
10 |
1 2 3 4 5 6 7 8
|
uspgrlim |
|- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. ( G GraphLocIso H ) ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) ) |
11 |
9 10
|
mpbid |
|- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. ( G GraphLocIso H ) ) -> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) |