| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspgrlim.v |
|- V = ( Vtx ` G ) |
| 2 |
|
uspgrlim.w |
|- W = ( Vtx ` H ) |
| 3 |
|
uspgrlim.n |
|- N = ( G ClNeighbVtx v ) |
| 4 |
|
uspgrlim.m |
|- M = ( H ClNeighbVtx ( F ` v ) ) |
| 5 |
|
uspgrlim.i |
|- I = ( Edg ` G ) |
| 6 |
|
uspgrlim.j |
|- J = ( Edg ` H ) |
| 7 |
|
uspgrlim.k |
|- K = { x e. I | x C_ N } |
| 8 |
|
uspgrlim.l |
|- L = { x e. J | x C_ M } |
| 9 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 10 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
| 11 |
|
eqid |
|- { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } |
| 12 |
|
eqid |
|- { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } = { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } |
| 13 |
1 2 3 4 9 10 11 12
|
isgrlim2 |
|- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. Z ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) ) ) |
| 14 |
|
fvex |
|- ( iEdg ` H ) e. _V |
| 15 |
|
vex |
|- h e. _V |
| 16 |
14 15
|
coex |
|- ( ( iEdg ` H ) o. h ) e. _V |
| 17 |
|
fvex |
|- ( iEdg ` G ) e. _V |
| 18 |
17
|
cnvex |
|- `' ( iEdg ` G ) e. _V |
| 19 |
16 18
|
coex |
|- ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) e. _V |
| 20 |
19
|
a1i |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) e. _V ) |
| 21 |
9
|
uspgrf1oedg |
|- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) |
| 22 |
21
|
ad2antrr |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) |
| 23 |
|
simprl |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) |
| 24 |
10
|
uspgrf1oedg |
|- ( H e. USPGraph -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) |
| 25 |
24
|
ad2antlr |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) |
| 26 |
|
ssrab2 |
|- { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) |
| 27 |
|
ssrab2 |
|- { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } C_ dom ( iEdg ` H ) |
| 28 |
26 27
|
pm3.2i |
|- ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } C_ dom ( iEdg ` H ) ) |
| 29 |
28
|
a1i |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } C_ dom ( iEdg ` H ) ) ) |
| 30 |
|
3f1oss1 |
|- ( ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) /\ ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } C_ dom ( iEdg ` H ) ) ) -> ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -1-1-onto-> ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |
| 31 |
22 23 25 29 30
|
syl31anc |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -1-1-onto-> ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |
| 32 |
|
eqidd |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) = ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ) |
| 33 |
3 5 7
|
uspgrlimlem1 |
|- ( G e. USPGraph -> K = ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) |
| 34 |
33
|
ad2antrr |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> K = ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) |
| 35 |
4 6 8
|
uspgrlimlem1 |
|- ( H e. USPGraph -> L = ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |
| 36 |
35
|
ad2antlr |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> L = ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |
| 37 |
32 34 36
|
f1oeq123d |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : K -1-1-onto-> L <-> ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -1-1-onto-> ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) ) |
| 38 |
31 37
|
mpbird |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : K -1-1-onto-> L ) |
| 39 |
|
simpll |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> G e. USPGraph ) |
| 40 |
|
simprr |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) |
| 41 |
1 2 3 4 5 6 7 8
|
uspgrlimlem3 |
|- ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) -> ( e e. K -> ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) |
| 42 |
39 23 40 41
|
syl3anc |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( e e. K -> ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) |
| 43 |
42
|
ralrimiv |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> A. e e. K ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) |
| 44 |
38 43
|
jca |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) |
| 45 |
|
f1oeq1 |
|- ( g = ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) -> ( g : K -1-1-onto-> L <-> ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : K -1-1-onto-> L ) ) |
| 46 |
|
fveq1 |
|- ( g = ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) -> ( g ` e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) |
| 47 |
46
|
eqeq2d |
|- ( g = ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) -> ( ( f " e ) = ( g ` e ) <-> ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) |
| 48 |
47
|
ralbidv |
|- ( g = ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) -> ( A. e e. K ( f " e ) = ( g ` e ) <-> A. e e. K ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) |
| 49 |
45 48
|
anbi12d |
|- ( g = ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) -> ( ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) <-> ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) ) |
| 50 |
20 44 49
|
spcedv |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) |
| 51 |
50
|
ex |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) -> E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) |
| 52 |
51
|
exlimdv |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) -> E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) |
| 53 |
14
|
cnvex |
|- `' ( iEdg ` H ) e. _V |
| 54 |
|
vex |
|- g e. _V |
| 55 |
53 54
|
coex |
|- ( `' ( iEdg ` H ) o. g ) e. _V |
| 56 |
55 17
|
coex |
|- ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) e. _V |
| 57 |
56
|
a1i |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) e. _V ) |
| 58 |
21
|
ad2antrr |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) |
| 59 |
|
simprl |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> g : K -1-1-onto-> L ) |
| 60 |
24
|
ad2antlr |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) |
| 61 |
5
|
rabeqi |
|- { x e. I | x C_ N } = { x e. ( Edg ` G ) | x C_ N } |
| 62 |
7 61
|
eqtri |
|- K = { x e. ( Edg ` G ) | x C_ N } |
| 63 |
62
|
ssrab3 |
|- K C_ ( Edg ` G ) |
| 64 |
6
|
rabeqi |
|- { x e. J | x C_ M } = { x e. ( Edg ` H ) | x C_ M } |
| 65 |
8 64
|
eqtri |
|- L = { x e. ( Edg ` H ) | x C_ M } |
| 66 |
65
|
ssrab3 |
|- L C_ ( Edg ` H ) |
| 67 |
63 66
|
pm3.2i |
|- ( K C_ ( Edg ` G ) /\ L C_ ( Edg ` H ) ) |
| 68 |
67
|
a1i |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( K C_ ( Edg ` G ) /\ L C_ ( Edg ` H ) ) ) |
| 69 |
|
3f1oss2 |
|- ( ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) /\ g : K -1-1-onto-> L /\ ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) /\ ( K C_ ( Edg ` G ) /\ L C_ ( Edg ` H ) ) ) -> ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : ( `' ( iEdg ` G ) " K ) -1-1-onto-> ( `' ( iEdg ` H ) " L ) ) |
| 70 |
58 59 60 68 69
|
syl31anc |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : ( `' ( iEdg ` G ) " K ) -1-1-onto-> ( `' ( iEdg ` H ) " L ) ) |
| 71 |
|
eqidd |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) = ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ) |
| 72 |
3 5 7
|
uspgrlimlem2 |
|- ( G e. USPGraph -> ( `' ( iEdg ` G ) " K ) = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) |
| 73 |
72
|
ad2antrr |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( `' ( iEdg ` G ) " K ) = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) |
| 74 |
4 6 8
|
uspgrlimlem2 |
|- ( H e. USPGraph -> ( `' ( iEdg ` H ) " L ) = { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) |
| 75 |
74
|
ad2antlr |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( `' ( iEdg ` H ) " L ) = { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) |
| 76 |
71 73 75
|
f1oeq123d |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : ( `' ( iEdg ` G ) " K ) -1-1-onto-> ( `' ( iEdg ` H ) " L ) <-> ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |
| 77 |
70 76
|
mpbid |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) |
| 78 |
|
fveq2 |
|- ( x = i -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` i ) ) |
| 79 |
78
|
sseq1d |
|- ( x = i -> ( ( ( iEdg ` G ) ` x ) C_ N <-> ( ( iEdg ` G ) ` i ) C_ N ) ) |
| 80 |
79
|
elrab |
|- ( i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } <-> ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) |
| 81 |
1 2 3 4 5 6 7 8
|
uspgrlimlem4 |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) ) |
| 82 |
80 81
|
biimtrid |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) ) |
| 83 |
82
|
ralrimiv |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) |
| 84 |
77 83
|
jca |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) ) |
| 85 |
|
f1oeq1 |
|- ( h = ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) -> ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } <-> ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |
| 86 |
|
fveq1 |
|- ( h = ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) -> ( h ` i ) = ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) |
| 87 |
86
|
fveq2d |
|- ( h = ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( h ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) |
| 88 |
87
|
eqeq2d |
|- ( h = ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) -> ( ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) ) |
| 89 |
88
|
ralbidv |
|- ( h = ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) ) |
| 90 |
85 89
|
anbi12d |
|- ( h = ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) -> ( ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) <-> ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) ) ) |
| 91 |
57 84 90
|
spcedv |
|- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) |
| 92 |
91
|
ex |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) -> E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
| 93 |
92
|
exlimdv |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) -> E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
| 94 |
52 93
|
impbid |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) <-> E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) |
| 95 |
94
|
anbi2d |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( f : N -1-1-onto-> M /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) <-> ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) |
| 96 |
95
|
exbidv |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( E. f ( f : N -1-1-onto-> M /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) <-> E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) |
| 97 |
96
|
ralbidv |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( A. v e. V E. f ( f : N -1-1-onto-> M /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) <-> A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) |
| 98 |
97
|
anbi2d |
|- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) ) |
| 99 |
98
|
3adant3 |
|- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. Z ) -> ( ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) ) |
| 100 |
13 99
|
bitrd |
|- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. Z ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) ) |