Step |
Hyp |
Ref |
Expression |
1 |
|
isgrlim.v |
|- V = ( Vtx ` G ) |
2 |
|
isgrlim.w |
|- W = ( Vtx ` H ) |
3 |
|
isgrlim2.n |
|- N = ( G ClNeighbVtx v ) |
4 |
|
isgrlim2.m |
|- M = ( H ClNeighbVtx ( F ` v ) ) |
5 |
|
isgrlim2.i |
|- I = ( iEdg ` G ) |
6 |
|
isgrlim2.j |
|- J = ( iEdg ` H ) |
7 |
|
isgrlim2.k |
|- K = { x e. dom I | ( I ` x ) C_ N } |
8 |
|
isgrlim2.l |
|- L = { x e. dom J | ( J ` x ) C_ M } |
9 |
1 2
|
isgrlim |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) ) |
10 |
3
|
eqcomi |
|- ( G ClNeighbVtx v ) = N |
11 |
10
|
oveq2i |
|- ( G ISubGr ( G ClNeighbVtx v ) ) = ( G ISubGr N ) |
12 |
4
|
eqcomi |
|- ( H ClNeighbVtx ( F ` v ) ) = M |
13 |
12
|
oveq2i |
|- ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) = ( H ISubGr M ) |
14 |
11 13
|
breq12i |
|- ( ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) <-> ( G ISubGr N ) ~=gr ( H ISubGr M ) ) |
15 |
14
|
a1i |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) <-> ( G ISubGr N ) ~=gr ( H ISubGr M ) ) ) |
16 |
5 6 3 4 7 8
|
clnbgrisubgrgrim |
|- ( ( G e. X /\ H e. Y ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr M ) <-> E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
17 |
16
|
3adant3 |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr M ) <-> E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
18 |
15 17
|
bitrd |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) <-> E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
19 |
18
|
ralbidv |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) <-> A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
20 |
19
|
anbi2d |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
21 |
9 20
|
bitrd |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |