Metamath Proof Explorer


Theorem grlimgrtrilem1

Description: Lemma 3 for grlimgrtri . (Contributed by AV, 24-Aug-2025) (Proof shortened by AV, 27-Dec-2025)

Ref Expression
Hypotheses grlimgrtrilem1.v V = Vtx G
grlimgrtrilem1.n N = G ClNeighbVtx a
grlimgrtrilem1.i I = Edg G
grlimgrtrilem1.k K = x I | x N
Assertion grlimgrtrilem1 G UHGraph a b I a c I b c I a b K a c K b c K

Proof

Step Hyp Ref Expression
1 grlimgrtrilem1.v V = Vtx G
2 grlimgrtrilem1.n N = G ClNeighbVtx a
3 grlimgrtrilem1.i I = Edg G
4 grlimgrtrilem1.k K = x I | x N
5 simpl G UHGraph a b I a c I b c I G UHGraph
6 simp1 a b I a c I b c I a b I
7 6 adantl G UHGraph a b I a c I b c I a b I
8 vex a V
9 8 prid1 a a b
10 9 a1i G UHGraph a b I a c I b c I a a b
11 2 3 4 clnbgrvtxedg G UHGraph a b I a a b a b K
12 5 7 10 11 syl3anc G UHGraph a b I a c I b c I a b K
13 simp2 a b I a c I b c I a c I
14 13 adantl G UHGraph a b I a c I b c I a c I
15 8 prid1 a a c
16 15 a1i G UHGraph a b I a c I b c I a a c
17 2 3 4 clnbgrvtxedg G UHGraph a c I a a c a c K
18 5 14 16 17 syl3anc G UHGraph a b I a c I b c I a c K
19 simpr3 G UHGraph a b I a c I b c I b c I
20 9 a1i a b I a c I b c I a a b
21 vex b V
22 21 prid2 b a b
23 22 a1i a b I a c I b c I b a b
24 6 20 23 3jca a b I a c I b c I a b I a a b b a b
25 3 2 clnbgredg G UHGraph a b I a a b b a b b N
26 24 25 sylan2 G UHGraph a b I a c I b c I b N
27 15 a1i a b I a c I b c I a a c
28 vex c V
29 28 prid2 c a c
30 29 a1i a b I a c I b c I c a c
31 13 27 30 3jca a b I a c I b c I a c I a a c c a c
32 3 2 clnbgredg G UHGraph a c I a a c c a c c N
33 31 32 sylan2 G UHGraph a b I a c I b c I c N
34 26 33 prssd G UHGraph a b I a c I b c I b c N
35 sseq1 x = b c x N b c N
36 35 4 elrab2 b c K b c I b c N
37 19 34 36 sylanbrc G UHGraph a b I a c I b c I b c K
38 12 18 37 3jca G UHGraph a b I a c I b c I a b K a c K b c K