Metamath Proof Explorer


Theorem grlimgrtrilem1

Description: Lemma 3 for grlimgrtri . (Contributed by AV, 24-Aug-2025)

Ref Expression
Hypotheses grlimgrtrilem1.v V = Vtx G
grlimgrtrilem1.n N = G ClNeighbVtx a
grlimgrtrilem1.i I = Edg G
grlimgrtrilem1.k K = x I | x N
Assertion grlimgrtrilem1 G UHGraph a b I a c I b c I a b K a c K b c K

Proof

Step Hyp Ref Expression
1 grlimgrtrilem1.v V = Vtx G
2 grlimgrtrilem1.n N = G ClNeighbVtx a
3 grlimgrtrilem1.i I = Edg G
4 grlimgrtrilem1.k K = x I | x N
5 simpr1 G UHGraph a b I a c I b c I a b I
6 simpl G UHGraph a b I a c I b c I G UHGraph
7 vex a V
8 7 prid1 a a b
9 8 a1i G UHGraph a b I a c I b c I a a b
10 3 2 clnbgrssedg G UHGraph a b I a a b a b N
11 6 5 9 10 syl3anc G UHGraph a b I a c I b c I a b N
12 5 11 jca G UHGraph a b I a c I b c I a b I a b N
13 simpr2 G UHGraph a b I a c I b c I a c I
14 7 prid1 a a c
15 14 a1i G UHGraph a b I a c I b c I a a c
16 3 2 clnbgrssedg G UHGraph a c I a a c a c N
17 6 13 15 16 syl3anc G UHGraph a b I a c I b c I a c N
18 13 17 jca G UHGraph a b I a c I b c I a c I a c N
19 simpr3 G UHGraph a b I a c I b c I b c I
20 id a b I a b I
21 8 a1i a b I a a b
22 vex b V
23 22 prid2 b a b
24 23 a1i a b I b a b
25 20 21 24 3jca a b I a b I a a b b a b
26 25 3ad2ant1 a b I a c I b c I a b I a a b b a b
27 3 2 clnbgredg G UHGraph a b I a a b b a b b N
28 26 27 sylan2 G UHGraph a b I a c I b c I b N
29 id a c I a c I
30 14 a1i a c I a a c
31 vex c V
32 31 prid2 c a c
33 32 a1i a c I c a c
34 29 30 33 3jca a c I a c I a a c c a c
35 34 3ad2ant2 a b I a c I b c I a c I a a c c a c
36 3 2 clnbgredg G UHGraph a c I a a c c a c c N
37 35 36 sylan2 G UHGraph a b I a c I b c I c N
38 28 37 prssd G UHGraph a b I a c I b c I b c N
39 19 38 jca G UHGraph a b I a c I b c I b c I b c N
40 4 eleq2i a b K a b x I | x N
41 sseq1 x = a b x N a b N
42 41 elrab a b x I | x N a b I a b N
43 40 42 bitri a b K a b I a b N
44 4 eleq2i a c K a c x I | x N
45 sseq1 x = a c x N a c N
46 45 elrab a c x I | x N a c I a c N
47 44 46 bitri a c K a c I a c N
48 4 eleq2i b c K b c x I | x N
49 sseq1 x = b c x N b c N
50 49 elrab b c x I | x N b c I b c N
51 48 50 bitri b c K b c I b c N
52 43 47 51 3anbi123i a b K a c K b c K a b I a b N a c I a c N b c I b c N
53 12 18 39 52 syl3anbrc G UHGraph a b I a c I b c I a b K a c K b c K