Metamath Proof Explorer


Theorem grtrimap

Description: Conditions for mapping triangles onto triangles. Lemma for grimgrtri and grlimgrtri . (Contributed by AV, 23-Aug-2025)

Ref Expression
Assertion grtrimap F : V 1-1 W a V b V c V T = a b c T = 3 F a W F b W F c W F T = F a F b F c F T = 3

Proof

Step Hyp Ref Expression
1 f1f F : V 1-1 W F : V W
2 1 ffvelcdmda F : V 1-1 W a V F a W
3 2 ex F : V 1-1 W a V F a W
4 1 ffvelcdmda F : V 1-1 W b V F b W
5 4 ex F : V 1-1 W b V F b W
6 1 ffvelcdmda F : V 1-1 W c V F c W
7 6 ex F : V 1-1 W c V F c W
8 3 5 7 3anim123d F : V 1-1 W a V b V c V F a W F b W F c W
9 8 adantrd F : V 1-1 W a V b V c V T = a b c T = 3 F a W F b W F c W
10 9 imp F : V 1-1 W a V b V c V T = a b c T = 3 F a W F b W F c W
11 imaeq2 T = a b c F T = F a b c
12 11 ad2antrl a V b V c V T = a b c T = 3 F T = F a b c
13 12 adantl F : V 1-1 W a V b V c V T = a b c T = 3 F T = F a b c
14 f1fn F : V 1-1 W F Fn V
15 14 adantr F : V 1-1 W a V b V c V T = a b c T = 3 F Fn V
16 simprl1 F : V 1-1 W a V b V c V T = a b c T = 3 a V
17 simprl2 F : V 1-1 W a V b V c V T = a b c T = 3 b V
18 simprl3 F : V 1-1 W a V b V c V T = a b c T = 3 c V
19 15 16 17 18 fnimatpd F : V 1-1 W a V b V c V T = a b c T = 3 F a b c = F a F b F c
20 13 19 eqtrd F : V 1-1 W a V b V c V T = a b c T = 3 F T = F a F b F c
21 simpl F : V 1-1 W a V b V c V T = a b c T = 3 F : V 1-1 W
22 tpssi a V b V c V a b c V
23 22 adantr a V b V c V T = a b c T = 3 a b c V
24 sseq1 T = a b c T V a b c V
25 24 ad2antrl a V b V c V T = a b c T = 3 T V a b c V
26 23 25 mpbird a V b V c V T = a b c T = 3 T V
27 26 adantl F : V 1-1 W a V b V c V T = a b c T = 3 T V
28 tpex a b c V
29 eleq1 T = a b c T V a b c V
30 28 29 mpbiri T = a b c T V
31 30 ad2antrl a V b V c V T = a b c T = 3 T V
32 31 adantl F : V 1-1 W a V b V c V T = a b c T = 3 T V
33 f1imaeng F : V 1-1 W T V T V F T T
34 hasheni F T T F T = T
35 33 34 syl F : V 1-1 W T V T V F T = T
36 35 eqcomd F : V 1-1 W T V T V T = F T
37 21 27 32 36 syl3anc F : V 1-1 W a V b V c V T = a b c T = 3 T = F T
38 simprrr F : V 1-1 W a V b V c V T = a b c T = 3 T = 3
39 37 38 eqtr3d F : V 1-1 W a V b V c V T = a b c T = 3 F T = 3
40 10 20 39 3jca F : V 1-1 W a V b V c V T = a b c T = 3 F a W F b W F c W F T = F a F b F c F T = 3
41 40 ex F : V 1-1 W a V b V c V T = a b c T = 3 F a W F b W F c W F T = F a F b F c F T = 3