Metamath Proof Explorer


Theorem grimgrtri

Description: Graph isomorphisms map triangles onto triangles. (Contributed by AV, 27-Jul-2025) (Proof shortened by AV, 24-Aug-2025)

Ref Expression
Hypotheses grimgrtri.g φ G UHGraph
grimgrtri.h φ H UHGraph
grimgrtri.n φ F G GraphIso H
grimgrtri.t No typesetting found for |- ( ph -> T e. ( GrTriangles ` G ) ) with typecode |-
Assertion grimgrtri Could not format assertion : No typesetting found for |- ( ph -> ( F " T ) e. ( GrTriangles ` H ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 grimgrtri.g φ G UHGraph
2 grimgrtri.h φ H UHGraph
3 grimgrtri.n φ F G GraphIso H
4 grimgrtri.t Could not format ( ph -> T e. ( GrTriangles ` G ) ) : No typesetting found for |- ( ph -> T e. ( GrTriangles ` G ) ) with typecode |-
5 eqid Vtx G = Vtx G
6 eqid Edg G = Edg G
7 5 6 grtriprop Could not format ( T e. ( GrTriangles ` G ) -> E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) with typecode |-
8 4 7 syl φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G
9 eqid Vtx H = Vtx H
10 5 9 grimf1o F G GraphIso H F : Vtx G 1-1 onto Vtx H
11 f1of1 F : Vtx G 1-1 onto Vtx H F : Vtx G 1-1 Vtx H
12 3 10 11 3syl φ F : Vtx G 1-1 Vtx H
13 12 ad3antrrr φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G F : Vtx G 1-1 Vtx H
14 simplrl φ a Vtx G b Vtx G c Vtx G a Vtx G
15 14 adantr φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G a Vtx G
16 simprr φ a Vtx G b Vtx G b Vtx G
17 16 adantr φ a Vtx G b Vtx G c Vtx G b Vtx G
18 17 adantr φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G b Vtx G
19 simplr φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G c Vtx G
20 15 18 19 3jca φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G a Vtx G b Vtx G c Vtx G
21 3simpa T = a b c T = 3 a b Edg G a c Edg G b c Edg G T = a b c T = 3
22 21 adantl φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G T = a b c T = 3
23 grtrimap F : Vtx G 1-1 Vtx H a Vtx G b Vtx G c Vtx G T = a b c T = 3 F a Vtx H F b Vtx H F c Vtx H F T = F a F b F c F T = 3
24 23 imp F : Vtx G 1-1 Vtx H a Vtx G b Vtx G c Vtx G T = a b c T = 3 F a Vtx H F b Vtx H F c Vtx H F T = F a F b F c F T = 3
25 13 20 22 24 syl12anc φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G F a Vtx H F b Vtx H F c Vtx H F T = F a F b F c F T = 3
26 eqid Edg H = Edg H
27 5 6 26 grimedg G UHGraph H UHGraph F G GraphIso H a b Edg G F a b Edg H a b Vtx G
28 5 6 26 grimedg G UHGraph H UHGraph F G GraphIso H a c Edg G F a c Edg H a c Vtx G
29 5 6 26 grimedg G UHGraph H UHGraph F G GraphIso H b c Edg G F b c Edg H b c Vtx G
30 27 28 29 3anbi123d G UHGraph H UHGraph F G GraphIso H a b Edg G a c Edg G b c Edg G F a b Edg H a b Vtx G F a c Edg H a c Vtx G F b c Edg H b c Vtx G
31 f1ofn F : Vtx G 1-1 onto Vtx H F Fn Vtx G
32 simpl F Fn Vtx G a Vtx G b Vtx G c Vtx G F Fn Vtx G
33 simprll F Fn Vtx G a Vtx G b Vtx G c Vtx G a Vtx G
34 simprlr F Fn Vtx G a Vtx G b Vtx G c Vtx G b Vtx G
35 fnimapr F Fn Vtx G a Vtx G b Vtx G F a b = F a F b
36 32 33 34 35 syl3anc F Fn Vtx G a Vtx G b Vtx G c Vtx G F a b = F a F b
37 36 eleq1d F Fn Vtx G a Vtx G b Vtx G c Vtx G F a b Edg H F a F b Edg H
38 37 biimpd F Fn Vtx G a Vtx G b Vtx G c Vtx G F a b Edg H F a F b Edg H
39 38 adantrd F Fn Vtx G a Vtx G b Vtx G c Vtx G F a b Edg H a b Vtx G F a F b Edg H
40 simprr F Fn Vtx G a Vtx G b Vtx G c Vtx G c Vtx G
41 fnimapr F Fn Vtx G a Vtx G c Vtx G F a c = F a F c
42 32 33 40 41 syl3anc F Fn Vtx G a Vtx G b Vtx G c Vtx G F a c = F a F c
43 42 eleq1d F Fn Vtx G a Vtx G b Vtx G c Vtx G F a c Edg H F a F c Edg H
44 43 biimpd F Fn Vtx G a Vtx G b Vtx G c Vtx G F a c Edg H F a F c Edg H
45 44 adantrd F Fn Vtx G a Vtx G b Vtx G c Vtx G F a c Edg H a c Vtx G F a F c Edg H
46 fnimapr F Fn Vtx G b Vtx G c Vtx G F b c = F b F c
47 32 34 40 46 syl3anc F Fn Vtx G a Vtx G b Vtx G c Vtx G F b c = F b F c
48 47 eleq1d F Fn Vtx G a Vtx G b Vtx G c Vtx G F b c Edg H F b F c Edg H
49 48 biimpd F Fn Vtx G a Vtx G b Vtx G c Vtx G F b c Edg H F b F c Edg H
50 49 adantrd F Fn Vtx G a Vtx G b Vtx G c Vtx G F b c Edg H b c Vtx G F b F c Edg H
51 39 45 50 3anim123d F Fn Vtx G a Vtx G b Vtx G c Vtx G F a b Edg H a b Vtx G F a c Edg H a c Vtx G F b c Edg H b c Vtx G F a F b Edg H F a F c Edg H F b F c Edg H
52 51 ex F Fn Vtx G a Vtx G b Vtx G c Vtx G F a b Edg H a b Vtx G F a c Edg H a c Vtx G F b c Edg H b c Vtx G F a F b Edg H F a F c Edg H F b F c Edg H
53 52 com23 F Fn Vtx G F a b Edg H a b Vtx G F a c Edg H a c Vtx G F b c Edg H b c Vtx G a Vtx G b Vtx G c Vtx G F a F b Edg H F a F c Edg H F b F c Edg H
54 10 31 53 3syl F G GraphIso H F a b Edg H a b Vtx G F a c Edg H a c Vtx G F b c Edg H b c Vtx G a Vtx G b Vtx G c Vtx G F a F b Edg H F a F c Edg H F b F c Edg H
55 54 3ad2ant3 G UHGraph H UHGraph F G GraphIso H F a b Edg H a b Vtx G F a c Edg H a c Vtx G F b c Edg H b c Vtx G a Vtx G b Vtx G c Vtx G F a F b Edg H F a F c Edg H F b F c Edg H
56 30 55 sylbid G UHGraph H UHGraph F G GraphIso H a b Edg G a c Edg G b c Edg G a Vtx G b Vtx G c Vtx G F a F b Edg H F a F c Edg H F b F c Edg H
57 56 2a1d G UHGraph H UHGraph F G GraphIso H T = a b c T = 3 a b Edg G a c Edg G b c Edg G a Vtx G b Vtx G c Vtx G F a F b Edg H F a F c Edg H F b F c Edg H
58 57 3impd G UHGraph H UHGraph F G GraphIso H T = a b c T = 3 a b Edg G a c Edg G b c Edg G a Vtx G b Vtx G c Vtx G F a F b Edg H F a F c Edg H F b F c Edg H
59 58 com23 G UHGraph H UHGraph F G GraphIso H a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G F a F b Edg H F a F c Edg H F b F c Edg H
60 1 2 3 59 syl3anc φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G F a F b Edg H F a F c Edg H F b F c Edg H
61 60 impl φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G F a F b Edg H F a F c Edg H F b F c Edg H
62 61 imp φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G F a F b Edg H F a F c Edg H F b F c Edg H
63 tpeq1 x = F a x y z = F a y z
64 63 eqeq2d x = F a F T = x y z F T = F a y z
65 preq1 x = F a x y = F a y
66 65 eleq1d x = F a x y Edg H F a y Edg H
67 preq1 x = F a x z = F a z
68 67 eleq1d x = F a x z Edg H F a z Edg H
69 66 68 3anbi12d x = F a x y Edg H x z Edg H y z Edg H F a y Edg H F a z Edg H y z Edg H
70 64 69 3anbi13d x = F a F T = x y z F T = 3 x y Edg H x z Edg H y z Edg H F T = F a y z F T = 3 F a y Edg H F a z Edg H y z Edg H
71 tpeq2 y = F b F a y z = F a F b z
72 71 eqeq2d y = F b F T = F a y z F T = F a F b z
73 preq2 y = F b F a y = F a F b
74 73 eleq1d y = F b F a y Edg H F a F b Edg H
75 preq1 y = F b y z = F b z
76 75 eleq1d y = F b y z Edg H F b z Edg H
77 74 76 3anbi13d y = F b F a y Edg H F a z Edg H y z Edg H F a F b Edg H F a z Edg H F b z Edg H
78 72 77 3anbi13d y = F b F T = F a y z F T = 3 F a y Edg H F a z Edg H y z Edg H F T = F a F b z F T = 3 F a F b Edg H F a z Edg H F b z Edg H
79 tpeq3 z = F c F a F b z = F a F b F c
80 79 eqeq2d z = F c F T = F a F b z F T = F a F b F c
81 preq2 z = F c F a z = F a F c
82 81 eleq1d z = F c F a z Edg H F a F c Edg H
83 preq2 z = F c F b z = F b F c
84 83 eleq1d z = F c F b z Edg H F b F c Edg H
85 82 84 3anbi23d z = F c F a F b Edg H F a z Edg H F b z Edg H F a F b Edg H F a F c Edg H F b F c Edg H
86 80 85 3anbi13d z = F c F T = F a F b z F T = 3 F a F b Edg H F a z Edg H F b z Edg H F T = F a F b F c F T = 3 F a F b Edg H F a F c Edg H F b F c Edg H
87 70 78 86 rspc3ev F a Vtx H F b Vtx H F c Vtx H F T = F a F b F c F T = 3 F a F b Edg H F a F c Edg H F b F c Edg H x Vtx H y Vtx H z Vtx H F T = x y z F T = 3 x y Edg H x z Edg H y z Edg H
88 87 3exp2 F a Vtx H F b Vtx H F c Vtx H F T = F a F b F c F T = 3 F a F b Edg H F a F c Edg H F b F c Edg H x Vtx H y Vtx H z Vtx H F T = x y z F T = 3 x y Edg H x z Edg H y z Edg H
89 88 3imp F a Vtx H F b Vtx H F c Vtx H F T = F a F b F c F T = 3 F a F b Edg H F a F c Edg H F b F c Edg H x Vtx H y Vtx H z Vtx H F T = x y z F T = 3 x y Edg H x z Edg H y z Edg H
90 25 62 89 sylc φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G x Vtx H y Vtx H z Vtx H F T = x y z F T = 3 x y Edg H x z Edg H y z Edg H
91 90 rexlimdva2 φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G x Vtx H y Vtx H z Vtx H F T = x y z F T = 3 x y Edg H x z Edg H y z Edg H
92 91 rexlimdvva φ a Vtx G b Vtx G c Vtx G T = a b c T = 3 a b Edg G a c Edg G b c Edg G x Vtx H y Vtx H z Vtx H F T = x y z F T = 3 x y Edg H x z Edg H y z Edg H
93 8 92 mpd φ x Vtx H y Vtx H z Vtx H F T = x y z F T = 3 x y Edg H x z Edg H y z Edg H
94 9 26 isgrtri Could not format ( ( F " T ) e. ( GrTriangles ` H ) <-> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) : No typesetting found for |- ( ( F " T ) e. ( GrTriangles ` H ) <-> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( ( F " T ) = { x , y , z } /\ ( # ` ( F " T ) ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) with typecode |-
95 93 94 sylibr Could not format ( ph -> ( F " T ) e. ( GrTriangles ` H ) ) : No typesetting found for |- ( ph -> ( F " T ) e. ( GrTriangles ` H ) ) with typecode |-