Step |
Hyp |
Ref |
Expression |
1 |
|
grimgrtri.g |
⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
2 |
|
grimgrtri.h |
⊢ ( 𝜑 → 𝐻 ∈ UHGraph ) |
3 |
|
grimgrtri.n |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
4 |
|
grimgrtri.t |
⊢ ( 𝜑 → 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) ) |
5 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
6 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
7 |
5 6
|
grtriprop |
⊢ ( 𝑇 ∈ ( GrTriangles ‘ 𝐺 ) → ∃ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
9 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
10 |
5 9
|
grimf1o |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
11 |
|
f1of1 |
⊢ ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
12 |
3 10 11
|
3syl |
⊢ ( 𝜑 → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
13 |
12
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
14 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑎 ∈ ( Vtx ‘ 𝐺 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → 𝑎 ∈ ( Vtx ‘ 𝐺 ) ) |
16 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) |
19 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) |
20 |
15 18 19
|
3jca |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) |
21 |
|
3simpa |
⊢ ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) |
22 |
21
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) |
23 |
|
grtrimap |
⊢ ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ) ) ) |
24 |
23
|
imp |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ) ) |
25 |
13 20 22 24
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ) ) |
26 |
|
eqid |
⊢ ( Edg ‘ 𝐻 ) = ( Edg ‘ 𝐻 ) |
27 |
5 6 26
|
grimedg |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ↔ ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) ) ) |
28 |
5 6 26
|
grimedg |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ↔ ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) ) |
29 |
5 6 26
|
grimedg |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ↔ ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) ) |
30 |
27 28 29
|
3anbi123d |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) ) ) |
31 |
|
f1ofn |
⊢ ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 Fn ( Vtx ‘ 𝐺 ) ) |
32 |
|
simpl |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → 𝐹 Fn ( Vtx ‘ 𝐺 ) ) |
33 |
|
simprll |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → 𝑎 ∈ ( Vtx ‘ 𝐺 ) ) |
34 |
|
simprlr |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) |
35 |
|
fnimapr |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐹 “ { 𝑎 , 𝑏 } ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ) |
36 |
32 33 34 35
|
syl3anc |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( 𝐹 “ { 𝑎 , 𝑏 } ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ) |
37 |
36
|
eleq1d |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
38 |
37
|
biimpd |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) → { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
39 |
38
|
adantrd |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) → { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
40 |
|
simprr |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) |
41 |
|
fnimapr |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐹 “ { 𝑎 , 𝑐 } ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ) |
42 |
32 33 40 41
|
syl3anc |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( 𝐹 “ { 𝑎 , 𝑐 } ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ) |
43 |
42
|
eleq1d |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
44 |
43
|
biimpd |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) → { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
45 |
44
|
adantrd |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) → { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
46 |
|
fnimapr |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐹 “ { 𝑏 , 𝑐 } ) = { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ) |
47 |
32 34 40 46
|
syl3anc |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( 𝐹 “ { 𝑏 , 𝑐 } ) = { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ) |
48 |
47
|
eleq1d |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
49 |
48
|
biimpd |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) → { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
50 |
49
|
adantrd |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) → { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
51 |
39 45 50
|
3anim123d |
⊢ ( ( 𝐹 Fn ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
52 |
51
|
ex |
⊢ ( 𝐹 Fn ( Vtx ‘ 𝐺 ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
53 |
52
|
com23 |
⊢ ( 𝐹 Fn ( Vtx ‘ 𝐺 ) → ( ( ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
54 |
10 31 53
|
3syl |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
55 |
54
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( ( ( ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑏 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑎 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑎 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 𝐹 “ { 𝑏 , 𝑐 } ) ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑏 , 𝑐 } ⊆ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
56 |
30 55
|
sylbid |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
57 |
56
|
2a1d |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → ( ( ♯ ‘ 𝑇 ) = 3 → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) |
58 |
57
|
3impd |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
59 |
58
|
com23 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
60 |
1 2 3 59
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
61 |
60
|
impl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
62 |
61
|
imp |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
63 |
|
tpeq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → { 𝑥 , 𝑦 , 𝑧 } = { ( 𝐹 ‘ 𝑎 ) , 𝑦 , 𝑧 } ) |
64 |
63
|
eqeq2d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ↔ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , 𝑦 , 𝑧 } ) ) |
65 |
|
preq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → { 𝑥 , 𝑦 } = { ( 𝐹 ‘ 𝑎 ) , 𝑦 } ) |
66 |
65
|
eleq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ) ) |
67 |
|
preq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → { 𝑥 , 𝑧 } = { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ) |
68 |
67
|
eleq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) |
69 |
66 68
|
3anbi12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ↔ ( { ( 𝐹 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
70 |
64 69
|
3anbi13d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { ( 𝐹 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
71 |
|
tpeq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → { ( 𝐹 ‘ 𝑎 ) , 𝑦 , 𝑧 } = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , 𝑧 } ) |
72 |
71
|
eqeq2d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , 𝑦 , 𝑧 } ↔ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , 𝑧 } ) ) |
73 |
|
preq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → { ( 𝐹 ‘ 𝑎 ) , 𝑦 } = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ) |
74 |
73
|
eleq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( { ( 𝐹 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
75 |
|
preq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → { 𝑦 , 𝑧 } = { ( 𝐹 ‘ 𝑏 ) , 𝑧 } ) |
76 |
75
|
eleq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) |
77 |
74 76
|
3anbi13d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( { ( 𝐹 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ↔ ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
78 |
72 77
|
3anbi13d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { ( 𝐹 ‘ 𝑎 ) , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
79 |
|
tpeq3 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , 𝑧 } = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ) |
80 |
79
|
eqeq2d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , 𝑧 } ↔ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ) ) |
81 |
|
preq2 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → { ( 𝐹 ‘ 𝑎 ) , 𝑧 } = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ) |
82 |
81
|
eleq1d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
83 |
|
preq2 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → { ( 𝐹 ‘ 𝑏 ) , 𝑧 } = { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ) |
84 |
83
|
eleq1d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( { ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ↔ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) |
85 |
82 84
|
3anbi23d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ↔ ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
86 |
80 85
|
3anbi13d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ↔ ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
87 |
70 78 86
|
rspc3ev |
⊢ ( ( ( ( 𝐹 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
88 |
87
|
3exp2 |
⊢ ( ( ( 𝐹 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) → ( ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } → ( ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 → ( ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) ) ) |
89 |
88
|
3imp |
⊢ ( ( ( ( 𝐹 ‘ 𝑎 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ) → ( ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∈ ( Edg ‘ 𝐻 ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
90 |
25 62 89
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
91 |
90
|
rexlimdva2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
92 |
91
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑎 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) ) |
93 |
8 92
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
94 |
9 26
|
isgrtri |
⊢ ( ( 𝐹 “ 𝑇 ) ∈ ( GrTriangles ‘ 𝐻 ) ↔ ∃ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐻 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐻 ) ( ( 𝐹 “ 𝑇 ) = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐻 ) ) ) ) |
95 |
93 94
|
sylibr |
⊢ ( 𝜑 → ( 𝐹 “ 𝑇 ) ∈ ( GrTriangles ‘ 𝐻 ) ) |