Step |
Hyp |
Ref |
Expression |
1 |
|
usgrgrtrirex.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
usgrgrtrirex.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
usgrgrtrirex.n |
⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑎 ) |
4 |
1 2
|
isgrtri |
⊢ ( 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
5 |
4
|
exbii |
⊢ ( ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑡 ∃ 𝑎 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
6 |
|
rexcom4 |
⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑡 ∃ 𝑎 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
7 |
|
fveqeq2 |
⊢ ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } → ( ( ♯ ‘ 𝑡 ) = 3 ↔ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ) ) |
8 |
7
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ) → ( ( ♯ ‘ 𝑡 ) = 3 ↔ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ) ) |
9 |
|
neeq1 |
⊢ ( 𝑏 = 𝑦 → ( 𝑏 ≠ 𝑐 ↔ 𝑦 ≠ 𝑐 ) ) |
10 |
|
preq1 |
⊢ ( 𝑏 = 𝑦 → { 𝑏 , 𝑐 } = { 𝑦 , 𝑐 } ) |
11 |
10
|
eleq1d |
⊢ ( 𝑏 = 𝑦 → ( { 𝑏 , 𝑐 } ∈ 𝐸 ↔ { 𝑦 , 𝑐 } ∈ 𝐸 ) ) |
12 |
9 11
|
anbi12d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ↔ ( 𝑦 ≠ 𝑐 ∧ { 𝑦 , 𝑐 } ∈ 𝐸 ) ) ) |
13 |
|
neeq2 |
⊢ ( 𝑐 = 𝑧 → ( 𝑦 ≠ 𝑐 ↔ 𝑦 ≠ 𝑧 ) ) |
14 |
|
preq2 |
⊢ ( 𝑐 = 𝑧 → { 𝑦 , 𝑐 } = { 𝑦 , 𝑧 } ) |
15 |
14
|
eleq1d |
⊢ ( 𝑐 = 𝑧 → ( { 𝑦 , 𝑐 } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
16 |
13 15
|
anbi12d |
⊢ ( 𝑐 = 𝑧 → ( ( 𝑦 ≠ 𝑐 ∧ { 𝑦 , 𝑐 } ∈ 𝐸 ) ↔ ( 𝑦 ≠ 𝑧 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
17 |
|
prcom |
⊢ { 𝑎 , 𝑦 } = { 𝑦 , 𝑎 } |
18 |
17
|
eleq1i |
⊢ ( { 𝑎 , 𝑦 } ∈ 𝐸 ↔ { 𝑦 , 𝑎 } ∈ 𝐸 ) |
19 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) |
20 |
19
|
biimprcd |
⊢ ( { 𝑦 , 𝑎 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
21 |
18 20
|
sylbi |
⊢ ( { 𝑎 , 𝑦 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( 𝐺 ∈ USGraph → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
23 |
22
|
com12 |
⊢ ( 𝐺 ∈ USGraph → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
26 |
25
|
a1d |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) ) |
27 |
26
|
3imp |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
28 |
27 3
|
eleqtrrdi |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑦 ∈ 𝑁 ) |
29 |
|
prcom |
⊢ { 𝑎 , 𝑧 } = { 𝑧 , 𝑎 } |
30 |
29
|
eleq1i |
⊢ ( { 𝑎 , 𝑧 } ∈ 𝐸 ↔ { 𝑧 , 𝑎 } ∈ 𝐸 ) |
31 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑧 , 𝑎 } ∈ 𝐸 ) ) |
32 |
31
|
biimprcd |
⊢ ( { 𝑧 , 𝑎 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
33 |
30 32
|
sylbi |
⊢ ( { 𝑎 , 𝑧 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
34 |
33
|
3ad2ant2 |
⊢ ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( 𝐺 ∈ USGraph → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
35 |
34
|
com12 |
⊢ ( 𝐺 ∈ USGraph → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
38 |
37
|
a1d |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) ) |
39 |
38
|
3imp |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
40 |
39 3
|
eleqtrrdi |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑧 ∈ 𝑁 ) |
41 |
|
hashtpg |
⊢ ( ( 𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( ( 𝑎 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑎 ) ↔ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ) ) |
42 |
41
|
bicomd |
⊢ ( ( 𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ↔ ( 𝑎 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑎 ) ) ) |
43 |
42
|
el3v |
⊢ ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ↔ ( 𝑎 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑎 ) ) |
44 |
43
|
simp2bi |
⊢ ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → 𝑦 ≠ 𝑧 ) |
45 |
44
|
3ad2ant2 |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑦 ≠ 𝑧 ) |
46 |
|
simp33 |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → { 𝑦 , 𝑧 } ∈ 𝐸 ) |
47 |
45 46
|
jca |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝑦 ≠ 𝑧 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
48 |
12 16 28 40 47
|
2rspcedvdw |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) |
49 |
48
|
3exp |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) |
50 |
49
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) |
51 |
8 50
|
sylbid |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ) → ( ( ♯ ‘ 𝑡 ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) |
52 |
51
|
ex |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } → ( ( ♯ ‘ 𝑡 ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) ) |
53 |
52
|
3impd |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
54 |
53
|
rexlimdvva |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
55 |
54
|
exlimdv |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
56 |
3
|
eleq2i |
⊢ ( 𝑏 ∈ 𝑁 ↔ 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
57 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑏 , 𝑎 } ∈ 𝐸 ) ) |
58 |
56 57
|
bitrid |
⊢ ( 𝐺 ∈ USGraph → ( 𝑏 ∈ 𝑁 ↔ { 𝑏 , 𝑎 } ∈ 𝐸 ) ) |
59 |
3
|
eleq2i |
⊢ ( 𝑐 ∈ 𝑁 ↔ 𝑐 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
60 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝑐 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) |
61 |
59 60
|
bitrid |
⊢ ( 𝐺 ∈ USGraph → ( 𝑐 ∈ 𝑁 ↔ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) |
62 |
58 61
|
anbi12d |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) ↔ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) ) |
63 |
62
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) ↔ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) ) |
64 |
|
tpex |
⊢ { 𝑎 , 𝑏 , 𝑐 } ∈ V |
65 |
64
|
a1i |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑏 , 𝑐 } ∈ V ) |
66 |
|
tpeq2 |
⊢ ( 𝑦 = 𝑏 → { 𝑎 , 𝑦 , 𝑧 } = { 𝑎 , 𝑏 , 𝑧 } ) |
67 |
66
|
eqeq2d |
⊢ ( 𝑦 = 𝑏 → ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ↔ { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ) ) |
68 |
|
preq2 |
⊢ ( 𝑦 = 𝑏 → { 𝑎 , 𝑦 } = { 𝑎 , 𝑏 } ) |
69 |
68
|
eleq1d |
⊢ ( 𝑦 = 𝑏 → ( { 𝑎 , 𝑦 } ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
70 |
|
preq1 |
⊢ ( 𝑦 = 𝑏 → { 𝑦 , 𝑧 } = { 𝑏 , 𝑧 } ) |
71 |
70
|
eleq1d |
⊢ ( 𝑦 = 𝑏 → ( { 𝑦 , 𝑧 } ∈ 𝐸 ↔ { 𝑏 , 𝑧 } ∈ 𝐸 ) ) |
72 |
69 71
|
3anbi13d |
⊢ ( 𝑦 = 𝑏 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ) ) |
73 |
67 72
|
3anbi13d |
⊢ ( 𝑦 = 𝑏 → ( ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ) ) ) |
74 |
|
tpeq3 |
⊢ ( 𝑧 = 𝑐 → { 𝑎 , 𝑏 , 𝑧 } = { 𝑎 , 𝑏 , 𝑐 } ) |
75 |
74
|
eqeq2d |
⊢ ( 𝑧 = 𝑐 → ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ↔ { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } ) ) |
76 |
|
preq2 |
⊢ ( 𝑧 = 𝑐 → { 𝑎 , 𝑧 } = { 𝑎 , 𝑐 } ) |
77 |
76
|
eleq1d |
⊢ ( 𝑧 = 𝑐 → ( { 𝑎 , 𝑧 } ∈ 𝐸 ↔ { 𝑎 , 𝑐 } ∈ 𝐸 ) ) |
78 |
|
preq2 |
⊢ ( 𝑧 = 𝑐 → { 𝑏 , 𝑧 } = { 𝑏 , 𝑐 } ) |
79 |
78
|
eleq1d |
⊢ ( 𝑧 = 𝑐 → ( { 𝑏 , 𝑧 } ∈ 𝐸 ↔ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) |
80 |
77 79
|
3anbi23d |
⊢ ( 𝑧 = 𝑐 → ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
81 |
75 80
|
3anbi13d |
⊢ ( 𝑧 = 𝑐 → ( ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ) ↔ ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) |
82 |
|
usgruhgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) |
83 |
82
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → 𝐺 ∈ UHGraph ) |
84 |
2
|
eleq2i |
⊢ ( { 𝑏 , 𝑎 } ∈ 𝐸 ↔ { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
85 |
84
|
biimpi |
⊢ ( { 𝑏 , 𝑎 } ∈ 𝐸 → { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
86 |
85
|
adantr |
⊢ ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
87 |
|
vex |
⊢ 𝑏 ∈ V |
88 |
87
|
prid1 |
⊢ 𝑏 ∈ { 𝑏 , 𝑎 } |
89 |
88
|
a1i |
⊢ ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → 𝑏 ∈ { 𝑏 , 𝑎 } ) |
90 |
|
uhgredgrnv |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ∧ 𝑏 ∈ { 𝑏 , 𝑎 } ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) |
91 |
83 86 89 90
|
syl3an |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) |
92 |
91 1
|
eleqtrrdi |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑏 ∈ 𝑉 ) |
93 |
2
|
eleq2i |
⊢ ( { 𝑐 , 𝑎 } ∈ 𝐸 ↔ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
94 |
93
|
biimpi |
⊢ ( { 𝑐 , 𝑎 } ∈ 𝐸 → { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
95 |
94
|
adantl |
⊢ ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
96 |
|
vex |
⊢ 𝑐 ∈ V |
97 |
96
|
prid1 |
⊢ 𝑐 ∈ { 𝑐 , 𝑎 } |
98 |
97
|
a1i |
⊢ ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → 𝑐 ∈ { 𝑐 , 𝑎 } ) |
99 |
|
uhgredgrnv |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ∧ 𝑐 ∈ { 𝑐 , 𝑎 } ) → 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) |
100 |
83 95 98 99
|
syl3an |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) |
101 |
100 1
|
eleqtrrdi |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑐 ∈ 𝑉 ) |
102 |
|
eqidd |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } ) |
103 |
2
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝑏 , 𝑎 } ∈ 𝐸 ) → 𝑏 ≠ 𝑎 ) |
104 |
103
|
necomd |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝑏 , 𝑎 } ∈ 𝐸 ) → 𝑎 ≠ 𝑏 ) |
105 |
104
|
ad2ant2r |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) → 𝑎 ≠ 𝑏 ) |
106 |
105
|
3adant3 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑎 ≠ 𝑏 ) |
107 |
|
simpl |
⊢ ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → 𝑏 ≠ 𝑐 ) |
108 |
107
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑏 ≠ 𝑐 ) |
109 |
2
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → 𝑐 ≠ 𝑎 ) |
110 |
109
|
ad2ant2rl |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) → 𝑐 ≠ 𝑎 ) |
111 |
110
|
3adant3 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑐 ≠ 𝑎 ) |
112 |
106 108 111
|
3jca |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) |
113 |
|
hashtpg |
⊢ ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑐 ∈ V ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ↔ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ) ) |
114 |
113
|
el3v |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ↔ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ) |
115 |
112 114
|
sylib |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ) |
116 |
|
prcom |
⊢ { 𝑏 , 𝑎 } = { 𝑎 , 𝑏 } |
117 |
116
|
eleq1i |
⊢ ( { 𝑏 , 𝑎 } ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) |
118 |
117
|
biimpi |
⊢ ( { 𝑏 , 𝑎 } ∈ 𝐸 → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
119 |
118
|
adantr |
⊢ ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
120 |
119
|
3ad2ant2 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
121 |
|
prcom |
⊢ { 𝑐 , 𝑎 } = { 𝑎 , 𝑐 } |
122 |
121
|
eleq1i |
⊢ ( { 𝑐 , 𝑎 } ∈ 𝐸 ↔ { 𝑎 , 𝑐 } ∈ 𝐸 ) |
123 |
122
|
biimpi |
⊢ ( { 𝑐 , 𝑎 } ∈ 𝐸 → { 𝑎 , 𝑐 } ∈ 𝐸 ) |
124 |
123
|
adantl |
⊢ ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑎 , 𝑐 } ∈ 𝐸 ) |
125 |
124
|
3ad2ant2 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑐 } ∈ 𝐸 ) |
126 |
|
simpr |
⊢ ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → { 𝑏 , 𝑐 } ∈ 𝐸 ) |
127 |
126
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑏 , 𝑐 } ∈ 𝐸 ) |
128 |
120 125 127
|
3jca |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) |
129 |
102 115 128
|
3jca |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
130 |
73 81 92 101 129
|
2rspcedvdw |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
131 |
|
eqeq1 |
⊢ ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ↔ { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ) ) |
132 |
|
fveqeq2 |
⊢ ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( ( ♯ ‘ 𝑡 ) = 3 ↔ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ) ) |
133 |
131 132
|
3anbi12d |
⊢ ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) |
134 |
133
|
2rexbidv |
⊢ ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) |
135 |
65 130 134
|
spcedv |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
136 |
135
|
3exp |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) ) |
137 |
63 136
|
sylbid |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) ) |
138 |
137
|
rexlimdvv |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) |
139 |
55 138
|
impbid |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
140 |
139
|
rexbidva |
⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
141 |
6 140
|
bitr3id |
⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑡 ∃ 𝑎 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
142 |
5 141
|
bitrid |
⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |