Metamath Proof Explorer


Theorem usgrgrtrirex

Description: Conditions for a simple graph to contain a triangle. (Contributed by AV, 7-Aug-2025)

Ref Expression
Hypotheses usgrgrtrirex.v 𝑉 = ( Vtx ‘ 𝐺 )
usgrgrtrirex.e 𝐸 = ( Edg ‘ 𝐺 )
usgrgrtrirex.n 𝑁 = ( 𝐺 NeighbVtx 𝑎 )
Assertion usgrgrtrirex ( 𝐺 ∈ USGraph → ( ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑎𝑉𝑏𝑁𝑐𝑁 ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) )

Proof

Step Hyp Ref Expression
1 usgrgrtrirex.v 𝑉 = ( Vtx ‘ 𝐺 )
2 usgrgrtrirex.e 𝐸 = ( Edg ‘ 𝐺 )
3 usgrgrtrirex.n 𝑁 = ( 𝐺 NeighbVtx 𝑎 )
4 1 2 isgrtri ( 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑎𝑉𝑦𝑉𝑧𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) )
5 4 exbii ( ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑡𝑎𝑉𝑦𝑉𝑧𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) )
6 rexcom4 ( ∃ 𝑎𝑉𝑡𝑦𝑉𝑧𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑡𝑎𝑉𝑦𝑉𝑧𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) )
7 fveqeq2 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } → ( ( ♯ ‘ 𝑡 ) = 3 ↔ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ) )
8 7 adantl ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) ∧ 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ) → ( ( ♯ ‘ 𝑡 ) = 3 ↔ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ) )
9 neeq1 ( 𝑏 = 𝑦 → ( 𝑏𝑐𝑦𝑐 ) )
10 preq1 ( 𝑏 = 𝑦 → { 𝑏 , 𝑐 } = { 𝑦 , 𝑐 } )
11 10 eleq1d ( 𝑏 = 𝑦 → ( { 𝑏 , 𝑐 } ∈ 𝐸 ↔ { 𝑦 , 𝑐 } ∈ 𝐸 ) )
12 9 11 anbi12d ( 𝑏 = 𝑦 → ( ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ↔ ( 𝑦𝑐 ∧ { 𝑦 , 𝑐 } ∈ 𝐸 ) ) )
13 neeq2 ( 𝑐 = 𝑧 → ( 𝑦𝑐𝑦𝑧 ) )
14 preq2 ( 𝑐 = 𝑧 → { 𝑦 , 𝑐 } = { 𝑦 , 𝑧 } )
15 14 eleq1d ( 𝑐 = 𝑧 → ( { 𝑦 , 𝑐 } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) )
16 13 15 anbi12d ( 𝑐 = 𝑧 → ( ( 𝑦𝑐 ∧ { 𝑦 , 𝑐 } ∈ 𝐸 ) ↔ ( 𝑦𝑧 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) )
17 prcom { 𝑎 , 𝑦 } = { 𝑦 , 𝑎 }
18 17 eleq1i ( { 𝑎 , 𝑦 } ∈ 𝐸 ↔ { 𝑦 , 𝑎 } ∈ 𝐸 )
19 2 nbusgreledg ( 𝐺 ∈ USGraph → ( 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑦 , 𝑎 } ∈ 𝐸 ) )
20 19 biimprcd ( { 𝑦 , 𝑎 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) )
21 18 20 sylbi ( { 𝑎 , 𝑦 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) )
22 21 3ad2ant1 ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( 𝐺 ∈ USGraph → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) )
23 22 com12 ( 𝐺 ∈ USGraph → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) )
24 23 adantr ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) )
25 24 adantr ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) )
26 25 a1d ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) )
27 26 3imp ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) )
28 27 3 eleqtrrdi ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑦𝑁 )
29 prcom { 𝑎 , 𝑧 } = { 𝑧 , 𝑎 }
30 29 eleq1i ( { 𝑎 , 𝑧 } ∈ 𝐸 ↔ { 𝑧 , 𝑎 } ∈ 𝐸 )
31 2 nbusgreledg ( 𝐺 ∈ USGraph → ( 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑧 , 𝑎 } ∈ 𝐸 ) )
32 31 biimprcd ( { 𝑧 , 𝑎 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) )
33 30 32 sylbi ( { 𝑎 , 𝑧 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) )
34 33 3ad2ant2 ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( 𝐺 ∈ USGraph → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) )
35 34 com12 ( 𝐺 ∈ USGraph → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) )
36 35 adantr ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) )
37 36 adantr ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) )
38 37 a1d ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) )
39 38 3imp ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) )
40 39 3 eleqtrrdi ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑧𝑁 )
41 hashtpg ( ( 𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( ( 𝑎𝑦𝑦𝑧𝑧𝑎 ) ↔ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ) )
42 41 bicomd ( ( 𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ↔ ( 𝑎𝑦𝑦𝑧𝑧𝑎 ) ) )
43 42 el3v ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ↔ ( 𝑎𝑦𝑦𝑧𝑧𝑎 ) )
44 43 simp2bi ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → 𝑦𝑧 )
45 44 3ad2ant2 ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑦𝑧 )
46 simp33 ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → { 𝑦 , 𝑧 } ∈ 𝐸 )
47 45 46 jca ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝑦𝑧 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) )
48 12 16 28 40 47 2rspcedvdw ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏𝑁𝑐𝑁 ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) )
49 48 3exp ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏𝑁𝑐𝑁 ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) )
50 49 adantr ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) ∧ 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏𝑁𝑐𝑁 ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) )
51 8 50 sylbid ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) ∧ 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ) → ( ( ♯ ‘ 𝑡 ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏𝑁𝑐𝑁 ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) )
52 51 ex ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) → ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } → ( ( ♯ ‘ 𝑡 ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏𝑁𝑐𝑁 ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) )
53 52 3impd ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( 𝑦𝑉𝑧𝑉 ) ) → ( ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏𝑁𝑐𝑁 ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) )
54 53 rexlimdvva ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) → ( ∃ 𝑦𝑉𝑧𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏𝑁𝑐𝑁 ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) )
55 54 exlimdv ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) → ( ∃ 𝑡𝑦𝑉𝑧𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏𝑁𝑐𝑁 ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) )
56 3 eleq2i ( 𝑏𝑁𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) )
57 2 nbusgreledg ( 𝐺 ∈ USGraph → ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑏 , 𝑎 } ∈ 𝐸 ) )
58 56 57 bitrid ( 𝐺 ∈ USGraph → ( 𝑏𝑁 ↔ { 𝑏 , 𝑎 } ∈ 𝐸 ) )
59 3 eleq2i ( 𝑐𝑁𝑐 ∈ ( 𝐺 NeighbVtx 𝑎 ) )
60 2 nbusgreledg ( 𝐺 ∈ USGraph → ( 𝑐 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑐 , 𝑎 } ∈ 𝐸 ) )
61 59 60 bitrid ( 𝐺 ∈ USGraph → ( 𝑐𝑁 ↔ { 𝑐 , 𝑎 } ∈ 𝐸 ) )
62 58 61 anbi12d ( 𝐺 ∈ USGraph → ( ( 𝑏𝑁𝑐𝑁 ) ↔ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) )
63 62 adantr ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) → ( ( 𝑏𝑁𝑐𝑁 ) ↔ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) )
64 tpex { 𝑎 , 𝑏 , 𝑐 } ∈ V
65 64 a1i ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑏 , 𝑐 } ∈ V )
66 tpeq2 ( 𝑦 = 𝑏 → { 𝑎 , 𝑦 , 𝑧 } = { 𝑎 , 𝑏 , 𝑧 } )
67 66 eqeq2d ( 𝑦 = 𝑏 → ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ↔ { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ) )
68 preq2 ( 𝑦 = 𝑏 → { 𝑎 , 𝑦 } = { 𝑎 , 𝑏 } )
69 68 eleq1d ( 𝑦 = 𝑏 → ( { 𝑎 , 𝑦 } ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) )
70 preq1 ( 𝑦 = 𝑏 → { 𝑦 , 𝑧 } = { 𝑏 , 𝑧 } )
71 70 eleq1d ( 𝑦 = 𝑏 → ( { 𝑦 , 𝑧 } ∈ 𝐸 ↔ { 𝑏 , 𝑧 } ∈ 𝐸 ) )
72 69 71 3anbi13d ( 𝑦 = 𝑏 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ) )
73 67 72 3anbi13d ( 𝑦 = 𝑏 → ( ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ) ) )
74 tpeq3 ( 𝑧 = 𝑐 → { 𝑎 , 𝑏 , 𝑧 } = { 𝑎 , 𝑏 , 𝑐 } )
75 74 eqeq2d ( 𝑧 = 𝑐 → ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ↔ { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } ) )
76 preq2 ( 𝑧 = 𝑐 → { 𝑎 , 𝑧 } = { 𝑎 , 𝑐 } )
77 76 eleq1d ( 𝑧 = 𝑐 → ( { 𝑎 , 𝑧 } ∈ 𝐸 ↔ { 𝑎 , 𝑐 } ∈ 𝐸 ) )
78 preq2 ( 𝑧 = 𝑐 → { 𝑏 , 𝑧 } = { 𝑏 , 𝑐 } )
79 78 eleq1d ( 𝑧 = 𝑐 → ( { 𝑏 , 𝑧 } ∈ 𝐸 ↔ { 𝑏 , 𝑐 } ∈ 𝐸 ) )
80 77 79 3anbi23d ( 𝑧 = 𝑐 → ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) )
81 75 80 3anbi13d ( 𝑧 = 𝑐 → ( ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ) ↔ ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) )
82 usgruhgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph )
83 82 adantr ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) → 𝐺 ∈ UHGraph )
84 2 eleq2i ( { 𝑏 , 𝑎 } ∈ 𝐸 ↔ { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) )
85 84 biimpi ( { 𝑏 , 𝑎 } ∈ 𝐸 → { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) )
86 85 adantr ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) )
87 vex 𝑏 ∈ V
88 87 prid1 𝑏 ∈ { 𝑏 , 𝑎 }
89 88 a1i ( ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → 𝑏 ∈ { 𝑏 , 𝑎 } )
90 uhgredgrnv ( ( 𝐺 ∈ UHGraph ∧ { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ∧ 𝑏 ∈ { 𝑏 , 𝑎 } ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) )
91 83 86 89 90 syl3an ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) )
92 91 1 eleqtrrdi ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑏𝑉 )
93 2 eleq2i ( { 𝑐 , 𝑎 } ∈ 𝐸 ↔ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) )
94 93 biimpi ( { 𝑐 , 𝑎 } ∈ 𝐸 → { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) )
95 94 adantl ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) )
96 vex 𝑐 ∈ V
97 96 prid1 𝑐 ∈ { 𝑐 , 𝑎 }
98 97 a1i ( ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → 𝑐 ∈ { 𝑐 , 𝑎 } )
99 uhgredgrnv ( ( 𝐺 ∈ UHGraph ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ∧ 𝑐 ∈ { 𝑐 , 𝑎 } ) → 𝑐 ∈ ( Vtx ‘ 𝐺 ) )
100 83 95 98 99 syl3an ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑐 ∈ ( Vtx ‘ 𝐺 ) )
101 100 1 eleqtrrdi ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑐𝑉 )
102 eqidd ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } )
103 2 usgredgne ( ( 𝐺 ∈ USGraph ∧ { 𝑏 , 𝑎 } ∈ 𝐸 ) → 𝑏𝑎 )
104 103 necomd ( ( 𝐺 ∈ USGraph ∧ { 𝑏 , 𝑎 } ∈ 𝐸 ) → 𝑎𝑏 )
105 104 ad2ant2r ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) → 𝑎𝑏 )
106 105 3adant3 ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑎𝑏 )
107 simpl ( ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → 𝑏𝑐 )
108 107 3ad2ant3 ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑏𝑐 )
109 2 usgredgne ( ( 𝐺 ∈ USGraph ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → 𝑐𝑎 )
110 109 ad2ant2rl ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) → 𝑐𝑎 )
111 110 3adant3 ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑐𝑎 )
112 106 108 111 3jca ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( 𝑎𝑏𝑏𝑐𝑐𝑎 ) )
113 hashtpg ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑐 ∈ V ) → ( ( 𝑎𝑏𝑏𝑐𝑐𝑎 ) ↔ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ) )
114 113 el3v ( ( 𝑎𝑏𝑏𝑐𝑐𝑎 ) ↔ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 )
115 112 114 sylib ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 )
116 prcom { 𝑏 , 𝑎 } = { 𝑎 , 𝑏 }
117 116 eleq1i ( { 𝑏 , 𝑎 } ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 )
118 117 biimpi ( { 𝑏 , 𝑎 } ∈ 𝐸 → { 𝑎 , 𝑏 } ∈ 𝐸 )
119 118 adantr ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑎 , 𝑏 } ∈ 𝐸 )
120 119 3ad2ant2 ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑏 } ∈ 𝐸 )
121 prcom { 𝑐 , 𝑎 } = { 𝑎 , 𝑐 }
122 121 eleq1i ( { 𝑐 , 𝑎 } ∈ 𝐸 ↔ { 𝑎 , 𝑐 } ∈ 𝐸 )
123 122 biimpi ( { 𝑐 , 𝑎 } ∈ 𝐸 → { 𝑎 , 𝑐 } ∈ 𝐸 )
124 123 adantl ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑎 , 𝑐 } ∈ 𝐸 )
125 124 3ad2ant2 ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑐 } ∈ 𝐸 )
126 simpr ( ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → { 𝑏 , 𝑐 } ∈ 𝐸 )
127 126 3ad2ant3 ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑏 , 𝑐 } ∈ 𝐸 )
128 120 125 127 3jca ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) )
129 102 115 128 3jca ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) )
130 73 81 92 101 129 2rspcedvdw ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ∃ 𝑦𝑉𝑧𝑉 ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) )
131 eqeq1 ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ↔ { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ) )
132 fveqeq2 ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( ( ♯ ‘ 𝑡 ) = 3 ↔ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ) )
133 131 132 3anbi12d ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) )
134 133 2rexbidv ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( ∃ 𝑦𝑉𝑧𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑦𝑉𝑧𝑉 ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) )
135 65 130 134 spcedv ( ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ∃ 𝑡𝑦𝑉𝑧𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) )
136 135 3exp ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) → ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → ( ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → ∃ 𝑡𝑦𝑉𝑧𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) )
137 63 136 sylbid ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) → ( ( 𝑏𝑁𝑐𝑁 ) → ( ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → ∃ 𝑡𝑦𝑉𝑧𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) )
138 137 rexlimdvv ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) → ( ∃ 𝑏𝑁𝑐𝑁 ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → ∃ 𝑡𝑦𝑉𝑧𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) )
139 55 138 impbid ( ( 𝐺 ∈ USGraph ∧ 𝑎𝑉 ) → ( ∃ 𝑡𝑦𝑉𝑧𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑏𝑁𝑐𝑁 ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) )
140 139 rexbidva ( 𝐺 ∈ USGraph → ( ∃ 𝑎𝑉𝑡𝑦𝑉𝑧𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑎𝑉𝑏𝑁𝑐𝑁 ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) )
141 6 140 bitr3id ( 𝐺 ∈ USGraph → ( ∃ 𝑡𝑎𝑉𝑦𝑉𝑧𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑎𝑉𝑏𝑁𝑐𝑁 ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) )
142 5 141 bitrid ( 𝐺 ∈ USGraph → ( ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑎𝑉𝑏𝑁𝑐𝑁 ( 𝑏𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) )