| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrgrtrirex.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
usgrgrtrirex.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
usgrgrtrirex.n |
⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑎 ) |
| 4 |
1 2
|
isgrtri |
⊢ ( 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 5 |
4
|
exbii |
⊢ ( ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑡 ∃ 𝑎 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 6 |
|
rexcom4 |
⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑡 ∃ 𝑎 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 7 |
|
fveqeq2 |
⊢ ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } → ( ( ♯ ‘ 𝑡 ) = 3 ↔ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ) → ( ( ♯ ‘ 𝑡 ) = 3 ↔ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ) ) |
| 9 |
|
neeq1 |
⊢ ( 𝑏 = 𝑦 → ( 𝑏 ≠ 𝑐 ↔ 𝑦 ≠ 𝑐 ) ) |
| 10 |
|
preq1 |
⊢ ( 𝑏 = 𝑦 → { 𝑏 , 𝑐 } = { 𝑦 , 𝑐 } ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝑏 = 𝑦 → ( { 𝑏 , 𝑐 } ∈ 𝐸 ↔ { 𝑦 , 𝑐 } ∈ 𝐸 ) ) |
| 12 |
9 11
|
anbi12d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ↔ ( 𝑦 ≠ 𝑐 ∧ { 𝑦 , 𝑐 } ∈ 𝐸 ) ) ) |
| 13 |
|
neeq2 |
⊢ ( 𝑐 = 𝑧 → ( 𝑦 ≠ 𝑐 ↔ 𝑦 ≠ 𝑧 ) ) |
| 14 |
|
preq2 |
⊢ ( 𝑐 = 𝑧 → { 𝑦 , 𝑐 } = { 𝑦 , 𝑧 } ) |
| 15 |
14
|
eleq1d |
⊢ ( 𝑐 = 𝑧 → ( { 𝑦 , 𝑐 } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 16 |
13 15
|
anbi12d |
⊢ ( 𝑐 = 𝑧 → ( ( 𝑦 ≠ 𝑐 ∧ { 𝑦 , 𝑐 } ∈ 𝐸 ) ↔ ( 𝑦 ≠ 𝑧 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 17 |
|
prcom |
⊢ { 𝑎 , 𝑦 } = { 𝑦 , 𝑎 } |
| 18 |
17
|
eleq1i |
⊢ ( { 𝑎 , 𝑦 } ∈ 𝐸 ↔ { 𝑦 , 𝑎 } ∈ 𝐸 ) |
| 19 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) |
| 20 |
19
|
biimprcd |
⊢ ( { 𝑦 , 𝑎 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 21 |
18 20
|
sylbi |
⊢ ( { 𝑎 , 𝑦 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( 𝐺 ∈ USGraph → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 23 |
22
|
com12 |
⊢ ( 𝐺 ∈ USGraph → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 25 |
24
|
adantr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 26 |
25
|
a1d |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) ) |
| 27 |
26
|
3imp |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
| 28 |
27 3
|
eleqtrrdi |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑦 ∈ 𝑁 ) |
| 29 |
|
prcom |
⊢ { 𝑎 , 𝑧 } = { 𝑧 , 𝑎 } |
| 30 |
29
|
eleq1i |
⊢ ( { 𝑎 , 𝑧 } ∈ 𝐸 ↔ { 𝑧 , 𝑎 } ∈ 𝐸 ) |
| 31 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑧 , 𝑎 } ∈ 𝐸 ) ) |
| 32 |
31
|
biimprcd |
⊢ ( { 𝑧 , 𝑎 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 33 |
30 32
|
sylbi |
⊢ ( { 𝑎 , 𝑧 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 34 |
33
|
3ad2ant2 |
⊢ ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( 𝐺 ∈ USGraph → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 35 |
34
|
com12 |
⊢ ( 𝐺 ∈ USGraph → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 37 |
36
|
adantr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 38 |
37
|
a1d |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) ) |
| 39 |
38
|
3imp |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
| 40 |
39 3
|
eleqtrrdi |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑧 ∈ 𝑁 ) |
| 41 |
|
hashtpg |
⊢ ( ( 𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( ( 𝑎 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑎 ) ↔ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ) ) |
| 42 |
41
|
bicomd |
⊢ ( ( 𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ↔ ( 𝑎 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑎 ) ) ) |
| 43 |
42
|
el3v |
⊢ ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ↔ ( 𝑎 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑎 ) ) |
| 44 |
43
|
simp2bi |
⊢ ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → 𝑦 ≠ 𝑧 ) |
| 45 |
44
|
3ad2ant2 |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑦 ≠ 𝑧 ) |
| 46 |
|
simp33 |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → { 𝑦 , 𝑧 } ∈ 𝐸 ) |
| 47 |
45 46
|
jca |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝑦 ≠ 𝑧 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 48 |
12 16 28 40 47
|
2rspcedvdw |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) |
| 49 |
48
|
3exp |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) |
| 50 |
49
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) |
| 51 |
8 50
|
sylbid |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ) → ( ( ♯ ‘ 𝑡 ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) |
| 52 |
51
|
ex |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } → ( ( ♯ ‘ 𝑡 ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) ) |
| 53 |
52
|
3impd |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 54 |
53
|
rexlimdvva |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 55 |
54
|
exlimdv |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 56 |
3
|
eleq2i |
⊢ ( 𝑏 ∈ 𝑁 ↔ 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
| 57 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑏 , 𝑎 } ∈ 𝐸 ) ) |
| 58 |
56 57
|
bitrid |
⊢ ( 𝐺 ∈ USGraph → ( 𝑏 ∈ 𝑁 ↔ { 𝑏 , 𝑎 } ∈ 𝐸 ) ) |
| 59 |
3
|
eleq2i |
⊢ ( 𝑐 ∈ 𝑁 ↔ 𝑐 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
| 60 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝑐 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) |
| 61 |
59 60
|
bitrid |
⊢ ( 𝐺 ∈ USGraph → ( 𝑐 ∈ 𝑁 ↔ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) |
| 62 |
58 61
|
anbi12d |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) ↔ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) ↔ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) ) |
| 64 |
|
tpex |
⊢ { 𝑎 , 𝑏 , 𝑐 } ∈ V |
| 65 |
64
|
a1i |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑏 , 𝑐 } ∈ V ) |
| 66 |
|
tpeq2 |
⊢ ( 𝑦 = 𝑏 → { 𝑎 , 𝑦 , 𝑧 } = { 𝑎 , 𝑏 , 𝑧 } ) |
| 67 |
66
|
eqeq2d |
⊢ ( 𝑦 = 𝑏 → ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ↔ { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ) ) |
| 68 |
|
preq2 |
⊢ ( 𝑦 = 𝑏 → { 𝑎 , 𝑦 } = { 𝑎 , 𝑏 } ) |
| 69 |
68
|
eleq1d |
⊢ ( 𝑦 = 𝑏 → ( { 𝑎 , 𝑦 } ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
| 70 |
|
preq1 |
⊢ ( 𝑦 = 𝑏 → { 𝑦 , 𝑧 } = { 𝑏 , 𝑧 } ) |
| 71 |
70
|
eleq1d |
⊢ ( 𝑦 = 𝑏 → ( { 𝑦 , 𝑧 } ∈ 𝐸 ↔ { 𝑏 , 𝑧 } ∈ 𝐸 ) ) |
| 72 |
69 71
|
3anbi13d |
⊢ ( 𝑦 = 𝑏 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ) ) |
| 73 |
67 72
|
3anbi13d |
⊢ ( 𝑦 = 𝑏 → ( ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ) ) ) |
| 74 |
|
tpeq3 |
⊢ ( 𝑧 = 𝑐 → { 𝑎 , 𝑏 , 𝑧 } = { 𝑎 , 𝑏 , 𝑐 } ) |
| 75 |
74
|
eqeq2d |
⊢ ( 𝑧 = 𝑐 → ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ↔ { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } ) ) |
| 76 |
|
preq2 |
⊢ ( 𝑧 = 𝑐 → { 𝑎 , 𝑧 } = { 𝑎 , 𝑐 } ) |
| 77 |
76
|
eleq1d |
⊢ ( 𝑧 = 𝑐 → ( { 𝑎 , 𝑧 } ∈ 𝐸 ↔ { 𝑎 , 𝑐 } ∈ 𝐸 ) ) |
| 78 |
|
preq2 |
⊢ ( 𝑧 = 𝑐 → { 𝑏 , 𝑧 } = { 𝑏 , 𝑐 } ) |
| 79 |
78
|
eleq1d |
⊢ ( 𝑧 = 𝑐 → ( { 𝑏 , 𝑧 } ∈ 𝐸 ↔ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) |
| 80 |
77 79
|
3anbi23d |
⊢ ( 𝑧 = 𝑐 → ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 81 |
75 80
|
3anbi13d |
⊢ ( 𝑧 = 𝑐 → ( ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ) ↔ ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) |
| 82 |
|
usgruhgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → 𝐺 ∈ UHGraph ) |
| 84 |
2
|
eleq2i |
⊢ ( { 𝑏 , 𝑎 } ∈ 𝐸 ↔ { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
| 85 |
84
|
biimpi |
⊢ ( { 𝑏 , 𝑎 } ∈ 𝐸 → { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
| 86 |
85
|
adantr |
⊢ ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
| 87 |
|
vex |
⊢ 𝑏 ∈ V |
| 88 |
87
|
prid1 |
⊢ 𝑏 ∈ { 𝑏 , 𝑎 } |
| 89 |
88
|
a1i |
⊢ ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → 𝑏 ∈ { 𝑏 , 𝑎 } ) |
| 90 |
|
uhgredgrnv |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ∧ 𝑏 ∈ { 𝑏 , 𝑎 } ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) |
| 91 |
83 86 89 90
|
syl3an |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) |
| 92 |
91 1
|
eleqtrrdi |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑏 ∈ 𝑉 ) |
| 93 |
2
|
eleq2i |
⊢ ( { 𝑐 , 𝑎 } ∈ 𝐸 ↔ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
| 94 |
93
|
biimpi |
⊢ ( { 𝑐 , 𝑎 } ∈ 𝐸 → { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
| 95 |
94
|
adantl |
⊢ ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
| 96 |
|
vex |
⊢ 𝑐 ∈ V |
| 97 |
96
|
prid1 |
⊢ 𝑐 ∈ { 𝑐 , 𝑎 } |
| 98 |
97
|
a1i |
⊢ ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → 𝑐 ∈ { 𝑐 , 𝑎 } ) |
| 99 |
|
uhgredgrnv |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ∧ 𝑐 ∈ { 𝑐 , 𝑎 } ) → 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) |
| 100 |
83 95 98 99
|
syl3an |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) |
| 101 |
100 1
|
eleqtrrdi |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑐 ∈ 𝑉 ) |
| 102 |
|
eqidd |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } ) |
| 103 |
2
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝑏 , 𝑎 } ∈ 𝐸 ) → 𝑏 ≠ 𝑎 ) |
| 104 |
103
|
necomd |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝑏 , 𝑎 } ∈ 𝐸 ) → 𝑎 ≠ 𝑏 ) |
| 105 |
104
|
ad2ant2r |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) → 𝑎 ≠ 𝑏 ) |
| 106 |
105
|
3adant3 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑎 ≠ 𝑏 ) |
| 107 |
|
simpl |
⊢ ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → 𝑏 ≠ 𝑐 ) |
| 108 |
107
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑏 ≠ 𝑐 ) |
| 109 |
2
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → 𝑐 ≠ 𝑎 ) |
| 110 |
109
|
ad2ant2rl |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) → 𝑐 ≠ 𝑎 ) |
| 111 |
110
|
3adant3 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑐 ≠ 𝑎 ) |
| 112 |
106 108 111
|
3jca |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) |
| 113 |
|
hashtpg |
⊢ ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑐 ∈ V ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ↔ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ) ) |
| 114 |
113
|
el3v |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ↔ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ) |
| 115 |
112 114
|
sylib |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ) |
| 116 |
|
prcom |
⊢ { 𝑏 , 𝑎 } = { 𝑎 , 𝑏 } |
| 117 |
116
|
eleq1i |
⊢ ( { 𝑏 , 𝑎 } ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) |
| 118 |
117
|
biimpi |
⊢ ( { 𝑏 , 𝑎 } ∈ 𝐸 → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
| 119 |
118
|
adantr |
⊢ ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
| 120 |
119
|
3ad2ant2 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
| 121 |
|
prcom |
⊢ { 𝑐 , 𝑎 } = { 𝑎 , 𝑐 } |
| 122 |
121
|
eleq1i |
⊢ ( { 𝑐 , 𝑎 } ∈ 𝐸 ↔ { 𝑎 , 𝑐 } ∈ 𝐸 ) |
| 123 |
122
|
biimpi |
⊢ ( { 𝑐 , 𝑎 } ∈ 𝐸 → { 𝑎 , 𝑐 } ∈ 𝐸 ) |
| 124 |
123
|
adantl |
⊢ ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑎 , 𝑐 } ∈ 𝐸 ) |
| 125 |
124
|
3ad2ant2 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑐 } ∈ 𝐸 ) |
| 126 |
|
simpr |
⊢ ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → { 𝑏 , 𝑐 } ∈ 𝐸 ) |
| 127 |
126
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑏 , 𝑐 } ∈ 𝐸 ) |
| 128 |
120 125 127
|
3jca |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) |
| 129 |
102 115 128
|
3jca |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 130 |
73 81 92 101 129
|
2rspcedvdw |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 131 |
|
eqeq1 |
⊢ ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ↔ { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ) ) |
| 132 |
|
fveqeq2 |
⊢ ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( ( ♯ ‘ 𝑡 ) = 3 ↔ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ) ) |
| 133 |
131 132
|
3anbi12d |
⊢ ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) |
| 134 |
133
|
2rexbidv |
⊢ ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) |
| 135 |
65 130 134
|
spcedv |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 136 |
135
|
3exp |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) ) |
| 137 |
63 136
|
sylbid |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) ) |
| 138 |
137
|
rexlimdvv |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) |
| 139 |
55 138
|
impbid |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 140 |
139
|
rexbidva |
⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 141 |
6 140
|
bitr3id |
⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑡 ∃ 𝑎 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 142 |
5 141
|
bitrid |
⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |