Metamath Proof Explorer


Theorem usgrgrtrirex

Description: Conditions for a simple graph to contain a triangle. (Contributed by AV, 7-Aug-2025)

Ref Expression
Hypotheses usgrgrtrirex.v V = Vtx G
usgrgrtrirex.e E = Edg G
usgrgrtrirex.n N = G NeighbVtx a
Assertion usgrgrtrirex Could not format assertion : No typesetting found for |- ( G e. USGraph -> ( E. t t e. ( GrTriangles ` G ) <-> E. a e. V E. b e. N E. c e. N ( b =/= c /\ { b , c } e. E ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 usgrgrtrirex.v V = Vtx G
2 usgrgrtrirex.e E = Edg G
3 usgrgrtrirex.n N = G NeighbVtx a
4 1 2 isgrtri Could not format ( t e. ( GrTriangles ` G ) <-> E. a e. V E. y e. V E. z e. V ( t = { a , y , z } /\ ( # ` t ) = 3 /\ ( { a , y } e. E /\ { a , z } e. E /\ { y , z } e. E ) ) ) : No typesetting found for |- ( t e. ( GrTriangles ` G ) <-> E. a e. V E. y e. V E. z e. V ( t = { a , y , z } /\ ( # ` t ) = 3 /\ ( { a , y } e. E /\ { a , z } e. E /\ { y , z } e. E ) ) ) with typecode |-
5 4 exbii Could not format ( E. t t e. ( GrTriangles ` G ) <-> E. t E. a e. V E. y e. V E. z e. V ( t = { a , y , z } /\ ( # ` t ) = 3 /\ ( { a , y } e. E /\ { a , z } e. E /\ { y , z } e. E ) ) ) : No typesetting found for |- ( E. t t e. ( GrTriangles ` G ) <-> E. t E. a e. V E. y e. V E. z e. V ( t = { a , y , z } /\ ( # ` t ) = 3 /\ ( { a , y } e. E /\ { a , z } e. E /\ { y , z } e. E ) ) ) with typecode |-
6 rexcom4 a V t y V z V t = a y z t = 3 a y E a z E y z E t a V y V z V t = a y z t = 3 a y E a z E y z E
7 fveqeq2 t = a y z t = 3 a y z = 3
8 7 adantl G USGraph a V y V z V t = a y z t = 3 a y z = 3
9 neeq1 b = y b c y c
10 preq1 b = y b c = y c
11 10 eleq1d b = y b c E y c E
12 9 11 anbi12d b = y b c b c E y c y c E
13 neeq2 c = z y c y z
14 preq2 c = z y c = y z
15 14 eleq1d c = z y c E y z E
16 13 15 anbi12d c = z y c y c E y z y z E
17 prcom a y = y a
18 17 eleq1i a y E y a E
19 2 nbusgreledg G USGraph y G NeighbVtx a y a E
20 19 biimprcd y a E G USGraph y G NeighbVtx a
21 18 20 sylbi a y E G USGraph y G NeighbVtx a
22 21 3ad2ant1 a y E a z E y z E G USGraph y G NeighbVtx a
23 22 com12 G USGraph a y E a z E y z E y G NeighbVtx a
24 23 adantr G USGraph a V a y E a z E y z E y G NeighbVtx a
25 24 adantr G USGraph a V y V z V a y E a z E y z E y G NeighbVtx a
26 25 a1d G USGraph a V y V z V a y z = 3 a y E a z E y z E y G NeighbVtx a
27 26 3imp G USGraph a V y V z V a y z = 3 a y E a z E y z E y G NeighbVtx a
28 27 3 eleqtrrdi G USGraph a V y V z V a y z = 3 a y E a z E y z E y N
29 prcom a z = z a
30 29 eleq1i a z E z a E
31 2 nbusgreledg G USGraph z G NeighbVtx a z a E
32 31 biimprcd z a E G USGraph z G NeighbVtx a
33 30 32 sylbi a z E G USGraph z G NeighbVtx a
34 33 3ad2ant2 a y E a z E y z E G USGraph z G NeighbVtx a
35 34 com12 G USGraph a y E a z E y z E z G NeighbVtx a
36 35 adantr G USGraph a V a y E a z E y z E z G NeighbVtx a
37 36 adantr G USGraph a V y V z V a y E a z E y z E z G NeighbVtx a
38 37 a1d G USGraph a V y V z V a y z = 3 a y E a z E y z E z G NeighbVtx a
39 38 3imp G USGraph a V y V z V a y z = 3 a y E a z E y z E z G NeighbVtx a
40 39 3 eleqtrrdi G USGraph a V y V z V a y z = 3 a y E a z E y z E z N
41 hashtpg a V y V z V a y y z z a a y z = 3
42 41 bicomd a V y V z V a y z = 3 a y y z z a
43 42 el3v a y z = 3 a y y z z a
44 43 simp2bi a y z = 3 y z
45 44 3ad2ant2 G USGraph a V y V z V a y z = 3 a y E a z E y z E y z
46 simp33 G USGraph a V y V z V a y z = 3 a y E a z E y z E y z E
47 45 46 jca G USGraph a V y V z V a y z = 3 a y E a z E y z E y z y z E
48 12 16 28 40 47 2rspcedvdw G USGraph a V y V z V a y z = 3 a y E a z E y z E b N c N b c b c E
49 48 3exp G USGraph a V y V z V a y z = 3 a y E a z E y z E b N c N b c b c E
50 49 adantr G USGraph a V y V z V t = a y z a y z = 3 a y E a z E y z E b N c N b c b c E
51 8 50 sylbid G USGraph a V y V z V t = a y z t = 3 a y E a z E y z E b N c N b c b c E
52 51 ex G USGraph a V y V z V t = a y z t = 3 a y E a z E y z E b N c N b c b c E
53 52 3impd G USGraph a V y V z V t = a y z t = 3 a y E a z E y z E b N c N b c b c E
54 53 rexlimdvva G USGraph a V y V z V t = a y z t = 3 a y E a z E y z E b N c N b c b c E
55 54 exlimdv G USGraph a V t y V z V t = a y z t = 3 a y E a z E y z E b N c N b c b c E
56 3 eleq2i b N b G NeighbVtx a
57 2 nbusgreledg G USGraph b G NeighbVtx a b a E
58 56 57 bitrid G USGraph b N b a E
59 3 eleq2i c N c G NeighbVtx a
60 2 nbusgreledg G USGraph c G NeighbVtx a c a E
61 59 60 bitrid G USGraph c N c a E
62 58 61 anbi12d G USGraph b N c N b a E c a E
63 62 adantr G USGraph a V b N c N b a E c a E
64 tpex a b c V
65 64 a1i G USGraph a V b a E c a E b c b c E a b c V
66 tpeq2 y = b a y z = a b z
67 66 eqeq2d y = b a b c = a y z a b c = a b z
68 preq2 y = b a y = a b
69 68 eleq1d y = b a y E a b E
70 preq1 y = b y z = b z
71 70 eleq1d y = b y z E b z E
72 69 71 3anbi13d y = b a y E a z E y z E a b E a z E b z E
73 67 72 3anbi13d y = b a b c = a y z a b c = 3 a y E a z E y z E a b c = a b z a b c = 3 a b E a z E b z E
74 tpeq3 z = c a b z = a b c
75 74 eqeq2d z = c a b c = a b z a b c = a b c
76 preq2 z = c a z = a c
77 76 eleq1d z = c a z E a c E
78 preq2 z = c b z = b c
79 78 eleq1d z = c b z E b c E
80 77 79 3anbi23d z = c a b E a z E b z E a b E a c E b c E
81 75 80 3anbi13d z = c a b c = a b z a b c = 3 a b E a z E b z E a b c = a b c a b c = 3 a b E a c E b c E
82 usgruhgr G USGraph G UHGraph
83 82 adantr G USGraph a V G UHGraph
84 2 eleq2i b a E b a Edg G
85 84 biimpi b a E b a Edg G
86 85 adantr b a E c a E b a Edg G
87 vex b V
88 87 prid1 b b a
89 88 a1i b c b c E b b a
90 uhgredgrnv G UHGraph b a Edg G b b a b Vtx G
91 83 86 89 90 syl3an G USGraph a V b a E c a E b c b c E b Vtx G
92 91 1 eleqtrrdi G USGraph a V b a E c a E b c b c E b V
93 2 eleq2i c a E c a Edg G
94 93 biimpi c a E c a Edg G
95 94 adantl b a E c a E c a Edg G
96 vex c V
97 96 prid1 c c a
98 97 a1i b c b c E c c a
99 uhgredgrnv G UHGraph c a Edg G c c a c Vtx G
100 83 95 98 99 syl3an G USGraph a V b a E c a E b c b c E c Vtx G
101 100 1 eleqtrrdi G USGraph a V b a E c a E b c b c E c V
102 eqidd G USGraph a V b a E c a E b c b c E a b c = a b c
103 2 usgredgne G USGraph b a E b a
104 103 necomd G USGraph b a E a b
105 104 ad2ant2r G USGraph a V b a E c a E a b
106 105 3adant3 G USGraph a V b a E c a E b c b c E a b
107 simpl b c b c E b c
108 107 3ad2ant3 G USGraph a V b a E c a E b c b c E b c
109 2 usgredgne G USGraph c a E c a
110 109 ad2ant2rl G USGraph a V b a E c a E c a
111 110 3adant3 G USGraph a V b a E c a E b c b c E c a
112 106 108 111 3jca G USGraph a V b a E c a E b c b c E a b b c c a
113 hashtpg a V b V c V a b b c c a a b c = 3
114 113 el3v a b b c c a a b c = 3
115 112 114 sylib G USGraph a V b a E c a E b c b c E a b c = 3
116 prcom b a = a b
117 116 eleq1i b a E a b E
118 117 biimpi b a E a b E
119 118 adantr b a E c a E a b E
120 119 3ad2ant2 G USGraph a V b a E c a E b c b c E a b E
121 prcom c a = a c
122 121 eleq1i c a E a c E
123 122 biimpi c a E a c E
124 123 adantl b a E c a E a c E
125 124 3ad2ant2 G USGraph a V b a E c a E b c b c E a c E
126 simpr b c b c E b c E
127 126 3ad2ant3 G USGraph a V b a E c a E b c b c E b c E
128 120 125 127 3jca G USGraph a V b a E c a E b c b c E a b E a c E b c E
129 102 115 128 3jca G USGraph a V b a E c a E b c b c E a b c = a b c a b c = 3 a b E a c E b c E
130 73 81 92 101 129 2rspcedvdw G USGraph a V b a E c a E b c b c E y V z V a b c = a y z a b c = 3 a y E a z E y z E
131 eqeq1 t = a b c t = a y z a b c = a y z
132 fveqeq2 t = a b c t = 3 a b c = 3
133 131 132 3anbi12d t = a b c t = a y z t = 3 a y E a z E y z E a b c = a y z a b c = 3 a y E a z E y z E
134 133 2rexbidv t = a b c y V z V t = a y z t = 3 a y E a z E y z E y V z V a b c = a y z a b c = 3 a y E a z E y z E
135 65 130 134 spcedv G USGraph a V b a E c a E b c b c E t y V z V t = a y z t = 3 a y E a z E y z E
136 135 3exp G USGraph a V b a E c a E b c b c E t y V z V t = a y z t = 3 a y E a z E y z E
137 63 136 sylbid G USGraph a V b N c N b c b c E t y V z V t = a y z t = 3 a y E a z E y z E
138 137 rexlimdvv G USGraph a V b N c N b c b c E t y V z V t = a y z t = 3 a y E a z E y z E
139 55 138 impbid G USGraph a V t y V z V t = a y z t = 3 a y E a z E y z E b N c N b c b c E
140 139 rexbidva G USGraph a V t y V z V t = a y z t = 3 a y E a z E y z E a V b N c N b c b c E
141 6 140 bitr3id G USGraph t a V y V z V t = a y z t = 3 a y E a z E y z E a V b N c N b c b c E
142 5 141 bitrid Could not format ( G e. USGraph -> ( E. t t e. ( GrTriangles ` G ) <-> E. a e. V E. b e. N E. c e. N ( b =/= c /\ { b , c } e. E ) ) ) : No typesetting found for |- ( G e. USGraph -> ( E. t t e. ( GrTriangles ` G ) <-> E. a e. V E. b e. N E. c e. N ( b =/= c /\ { b , c } e. E ) ) ) with typecode |-