Step |
Hyp |
Ref |
Expression |
1 |
|
usgrgrtrirex.v |
|
2 |
|
usgrgrtrirex.e |
|
3 |
|
usgrgrtrirex.n |
|
4 |
1 2
|
isgrtri |
Could not format ( t e. ( GrTriangles ` G ) <-> E. a e. V E. y e. V E. z e. V ( t = { a , y , z } /\ ( # ` t ) = 3 /\ ( { a , y } e. E /\ { a , z } e. E /\ { y , z } e. E ) ) ) : No typesetting found for |- ( t e. ( GrTriangles ` G ) <-> E. a e. V E. y e. V E. z e. V ( t = { a , y , z } /\ ( # ` t ) = 3 /\ ( { a , y } e. E /\ { a , z } e. E /\ { y , z } e. E ) ) ) with typecode |- |
5 |
4
|
exbii |
Could not format ( E. t t e. ( GrTriangles ` G ) <-> E. t E. a e. V E. y e. V E. z e. V ( t = { a , y , z } /\ ( # ` t ) = 3 /\ ( { a , y } e. E /\ { a , z } e. E /\ { y , z } e. E ) ) ) : No typesetting found for |- ( E. t t e. ( GrTriangles ` G ) <-> E. t E. a e. V E. y e. V E. z e. V ( t = { a , y , z } /\ ( # ` t ) = 3 /\ ( { a , y } e. E /\ { a , z } e. E /\ { y , z } e. E ) ) ) with typecode |- |
6 |
|
rexcom4 |
|
7 |
|
fveqeq2 |
|
8 |
7
|
adantl |
|
9 |
|
neeq1 |
|
10 |
|
preq1 |
|
11 |
10
|
eleq1d |
|
12 |
9 11
|
anbi12d |
|
13 |
|
neeq2 |
|
14 |
|
preq2 |
|
15 |
14
|
eleq1d |
|
16 |
13 15
|
anbi12d |
|
17 |
|
prcom |
|
18 |
17
|
eleq1i |
|
19 |
2
|
nbusgreledg |
|
20 |
19
|
biimprcd |
|
21 |
18 20
|
sylbi |
|
22 |
21
|
3ad2ant1 |
|
23 |
22
|
com12 |
|
24 |
23
|
adantr |
|
25 |
24
|
adantr |
|
26 |
25
|
a1d |
|
27 |
26
|
3imp |
|
28 |
27 3
|
eleqtrrdi |
|
29 |
|
prcom |
|
30 |
29
|
eleq1i |
|
31 |
2
|
nbusgreledg |
|
32 |
31
|
biimprcd |
|
33 |
30 32
|
sylbi |
|
34 |
33
|
3ad2ant2 |
|
35 |
34
|
com12 |
|
36 |
35
|
adantr |
|
37 |
36
|
adantr |
|
38 |
37
|
a1d |
|
39 |
38
|
3imp |
|
40 |
39 3
|
eleqtrrdi |
|
41 |
|
hashtpg |
|
42 |
41
|
bicomd |
|
43 |
42
|
el3v |
|
44 |
43
|
simp2bi |
|
45 |
44
|
3ad2ant2 |
|
46 |
|
simp33 |
|
47 |
45 46
|
jca |
|
48 |
12 16 28 40 47
|
2rspcedvdw |
|
49 |
48
|
3exp |
|
50 |
49
|
adantr |
|
51 |
8 50
|
sylbid |
|
52 |
51
|
ex |
|
53 |
52
|
3impd |
|
54 |
53
|
rexlimdvva |
|
55 |
54
|
exlimdv |
|
56 |
3
|
eleq2i |
|
57 |
2
|
nbusgreledg |
|
58 |
56 57
|
bitrid |
|
59 |
3
|
eleq2i |
|
60 |
2
|
nbusgreledg |
|
61 |
59 60
|
bitrid |
|
62 |
58 61
|
anbi12d |
|
63 |
62
|
adantr |
|
64 |
|
tpex |
|
65 |
64
|
a1i |
|
66 |
|
tpeq2 |
|
67 |
66
|
eqeq2d |
|
68 |
|
preq2 |
|
69 |
68
|
eleq1d |
|
70 |
|
preq1 |
|
71 |
70
|
eleq1d |
|
72 |
69 71
|
3anbi13d |
|
73 |
67 72
|
3anbi13d |
|
74 |
|
tpeq3 |
|
75 |
74
|
eqeq2d |
|
76 |
|
preq2 |
|
77 |
76
|
eleq1d |
|
78 |
|
preq2 |
|
79 |
78
|
eleq1d |
|
80 |
77 79
|
3anbi23d |
|
81 |
75 80
|
3anbi13d |
|
82 |
|
usgruhgr |
|
83 |
82
|
adantr |
|
84 |
2
|
eleq2i |
|
85 |
84
|
biimpi |
|
86 |
85
|
adantr |
|
87 |
|
vex |
|
88 |
87
|
prid1 |
|
89 |
88
|
a1i |
|
90 |
|
uhgredgrnv |
|
91 |
83 86 89 90
|
syl3an |
|
92 |
91 1
|
eleqtrrdi |
|
93 |
2
|
eleq2i |
|
94 |
93
|
biimpi |
|
95 |
94
|
adantl |
|
96 |
|
vex |
|
97 |
96
|
prid1 |
|
98 |
97
|
a1i |
|
99 |
|
uhgredgrnv |
|
100 |
83 95 98 99
|
syl3an |
|
101 |
100 1
|
eleqtrrdi |
|
102 |
|
eqidd |
|
103 |
2
|
usgredgne |
|
104 |
103
|
necomd |
|
105 |
104
|
ad2ant2r |
|
106 |
105
|
3adant3 |
|
107 |
|
simpl |
|
108 |
107
|
3ad2ant3 |
|
109 |
2
|
usgredgne |
|
110 |
109
|
ad2ant2rl |
|
111 |
110
|
3adant3 |
|
112 |
106 108 111
|
3jca |
|
113 |
|
hashtpg |
|
114 |
113
|
el3v |
|
115 |
112 114
|
sylib |
|
116 |
|
prcom |
|
117 |
116
|
eleq1i |
|
118 |
117
|
biimpi |
|
119 |
118
|
adantr |
|
120 |
119
|
3ad2ant2 |
|
121 |
|
prcom |
|
122 |
121
|
eleq1i |
|
123 |
122
|
biimpi |
|
124 |
123
|
adantl |
|
125 |
124
|
3ad2ant2 |
|
126 |
|
simpr |
|
127 |
126
|
3ad2ant3 |
|
128 |
120 125 127
|
3jca |
|
129 |
102 115 128
|
3jca |
|
130 |
73 81 92 101 129
|
2rspcedvdw |
|
131 |
|
eqeq1 |
|
132 |
|
fveqeq2 |
|
133 |
131 132
|
3anbi12d |
|
134 |
133
|
2rexbidv |
|
135 |
65 130 134
|
spcedv |
|
136 |
135
|
3exp |
|
137 |
63 136
|
sylbid |
|
138 |
137
|
rexlimdvv |
|
139 |
55 138
|
impbid |
|
140 |
139
|
rexbidva |
|
141 |
6 140
|
bitr3id |
|
142 |
5 141
|
bitrid |
Could not format ( G e. USGraph -> ( E. t t e. ( GrTriangles ` G ) <-> E. a e. V E. b e. N E. c e. N ( b =/= c /\ { b , c } e. E ) ) ) : No typesetting found for |- ( G e. USGraph -> ( E. t t e. ( GrTriangles ` G ) <-> E. a e. V E. b e. N E. c e. N ( b =/= c /\ { b , c } e. E ) ) ) with typecode |- |