| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrgrtrirex.v |
|
| 2 |
|
usgrgrtrirex.e |
|
| 3 |
|
usgrgrtrirex.n |
|
| 4 |
1 2
|
isgrtri |
Could not format ( t e. ( GrTriangles ` G ) <-> E. a e. V E. y e. V E. z e. V ( t = { a , y , z } /\ ( # ` t ) = 3 /\ ( { a , y } e. E /\ { a , z } e. E /\ { y , z } e. E ) ) ) : No typesetting found for |- ( t e. ( GrTriangles ` G ) <-> E. a e. V E. y e. V E. z e. V ( t = { a , y , z } /\ ( # ` t ) = 3 /\ ( { a , y } e. E /\ { a , z } e. E /\ { y , z } e. E ) ) ) with typecode |- |
| 5 |
4
|
exbii |
Could not format ( E. t t e. ( GrTriangles ` G ) <-> E. t E. a e. V E. y e. V E. z e. V ( t = { a , y , z } /\ ( # ` t ) = 3 /\ ( { a , y } e. E /\ { a , z } e. E /\ { y , z } e. E ) ) ) : No typesetting found for |- ( E. t t e. ( GrTriangles ` G ) <-> E. t E. a e. V E. y e. V E. z e. V ( t = { a , y , z } /\ ( # ` t ) = 3 /\ ( { a , y } e. E /\ { a , z } e. E /\ { y , z } e. E ) ) ) with typecode |- |
| 6 |
|
rexcom4 |
|
| 7 |
|
fveqeq2 |
|
| 8 |
7
|
adantl |
|
| 9 |
|
neeq1 |
|
| 10 |
|
preq1 |
|
| 11 |
10
|
eleq1d |
|
| 12 |
9 11
|
anbi12d |
|
| 13 |
|
neeq2 |
|
| 14 |
|
preq2 |
|
| 15 |
14
|
eleq1d |
|
| 16 |
13 15
|
anbi12d |
|
| 17 |
|
prcom |
|
| 18 |
17
|
eleq1i |
|
| 19 |
2
|
nbusgreledg |
|
| 20 |
19
|
biimprcd |
|
| 21 |
18 20
|
sylbi |
|
| 22 |
21
|
3ad2ant1 |
|
| 23 |
22
|
com12 |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
adantr |
|
| 26 |
25
|
a1d |
|
| 27 |
26
|
3imp |
|
| 28 |
27 3
|
eleqtrrdi |
|
| 29 |
|
prcom |
|
| 30 |
29
|
eleq1i |
|
| 31 |
2
|
nbusgreledg |
|
| 32 |
31
|
biimprcd |
|
| 33 |
30 32
|
sylbi |
|
| 34 |
33
|
3ad2ant2 |
|
| 35 |
34
|
com12 |
|
| 36 |
35
|
adantr |
|
| 37 |
36
|
adantr |
|
| 38 |
37
|
a1d |
|
| 39 |
38
|
3imp |
|
| 40 |
39 3
|
eleqtrrdi |
|
| 41 |
|
hashtpg |
|
| 42 |
41
|
bicomd |
|
| 43 |
42
|
el3v |
|
| 44 |
43
|
simp2bi |
|
| 45 |
44
|
3ad2ant2 |
|
| 46 |
|
simp33 |
|
| 47 |
45 46
|
jca |
|
| 48 |
12 16 28 40 47
|
2rspcedvdw |
|
| 49 |
48
|
3exp |
|
| 50 |
49
|
adantr |
|
| 51 |
8 50
|
sylbid |
|
| 52 |
51
|
ex |
|
| 53 |
52
|
3impd |
|
| 54 |
53
|
rexlimdvva |
|
| 55 |
54
|
exlimdv |
|
| 56 |
3
|
eleq2i |
|
| 57 |
2
|
nbusgreledg |
|
| 58 |
56 57
|
bitrid |
|
| 59 |
3
|
eleq2i |
|
| 60 |
2
|
nbusgreledg |
|
| 61 |
59 60
|
bitrid |
|
| 62 |
58 61
|
anbi12d |
|
| 63 |
62
|
adantr |
|
| 64 |
|
tpex |
|
| 65 |
64
|
a1i |
|
| 66 |
|
tpeq2 |
|
| 67 |
66
|
eqeq2d |
|
| 68 |
|
preq2 |
|
| 69 |
68
|
eleq1d |
|
| 70 |
|
preq1 |
|
| 71 |
70
|
eleq1d |
|
| 72 |
69 71
|
3anbi13d |
|
| 73 |
67 72
|
3anbi13d |
|
| 74 |
|
tpeq3 |
|
| 75 |
74
|
eqeq2d |
|
| 76 |
|
preq2 |
|
| 77 |
76
|
eleq1d |
|
| 78 |
|
preq2 |
|
| 79 |
78
|
eleq1d |
|
| 80 |
77 79
|
3anbi23d |
|
| 81 |
75 80
|
3anbi13d |
|
| 82 |
|
usgruhgr |
|
| 83 |
82
|
adantr |
|
| 84 |
2
|
eleq2i |
|
| 85 |
84
|
biimpi |
|
| 86 |
85
|
adantr |
|
| 87 |
|
vex |
|
| 88 |
87
|
prid1 |
|
| 89 |
88
|
a1i |
|
| 90 |
|
uhgredgrnv |
|
| 91 |
83 86 89 90
|
syl3an |
|
| 92 |
91 1
|
eleqtrrdi |
|
| 93 |
2
|
eleq2i |
|
| 94 |
93
|
biimpi |
|
| 95 |
94
|
adantl |
|
| 96 |
|
vex |
|
| 97 |
96
|
prid1 |
|
| 98 |
97
|
a1i |
|
| 99 |
|
uhgredgrnv |
|
| 100 |
83 95 98 99
|
syl3an |
|
| 101 |
100 1
|
eleqtrrdi |
|
| 102 |
|
eqidd |
|
| 103 |
2
|
usgredgne |
|
| 104 |
103
|
necomd |
|
| 105 |
104
|
ad2ant2r |
|
| 106 |
105
|
3adant3 |
|
| 107 |
|
simpl |
|
| 108 |
107
|
3ad2ant3 |
|
| 109 |
2
|
usgredgne |
|
| 110 |
109
|
ad2ant2rl |
|
| 111 |
110
|
3adant3 |
|
| 112 |
106 108 111
|
3jca |
|
| 113 |
|
hashtpg |
|
| 114 |
113
|
el3v |
|
| 115 |
112 114
|
sylib |
|
| 116 |
|
prcom |
|
| 117 |
116
|
eleq1i |
|
| 118 |
117
|
biimpi |
|
| 119 |
118
|
adantr |
|
| 120 |
119
|
3ad2ant2 |
|
| 121 |
|
prcom |
|
| 122 |
121
|
eleq1i |
|
| 123 |
122
|
biimpi |
|
| 124 |
123
|
adantl |
|
| 125 |
124
|
3ad2ant2 |
|
| 126 |
|
simpr |
|
| 127 |
126
|
3ad2ant3 |
|
| 128 |
120 125 127
|
3jca |
|
| 129 |
102 115 128
|
3jca |
|
| 130 |
73 81 92 101 129
|
2rspcedvdw |
|
| 131 |
|
eqeq1 |
|
| 132 |
|
fveqeq2 |
|
| 133 |
131 132
|
3anbi12d |
|
| 134 |
133
|
2rexbidv |
|
| 135 |
65 130 134
|
spcedv |
|
| 136 |
135
|
3exp |
|
| 137 |
63 136
|
sylbid |
|
| 138 |
137
|
rexlimdvv |
|
| 139 |
55 138
|
impbid |
|
| 140 |
139
|
rexbidva |
|
| 141 |
6 140
|
bitr3id |
|
| 142 |
5 141
|
bitrid |
Could not format ( G e. USGraph -> ( E. t t e. ( GrTriangles ` G ) <-> E. a e. V E. b e. N E. c e. N ( b =/= c /\ { b , c } e. E ) ) ) : No typesetting found for |- ( G e. USGraph -> ( E. t t e. ( GrTriangles ` G ) <-> E. a e. V E. b e. N E. c e. N ( b =/= c /\ { b , c } e. E ) ) ) with typecode |- |