| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → 𝐶 ∈ 𝑊 ) |
| 2 |
|
prfi |
⊢ { 𝐴 , 𝐵 } ∈ Fin |
| 3 |
2
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → { 𝐴 , 𝐵 } ∈ Fin ) |
| 4 |
|
elprg |
⊢ ( 𝐶 ∈ 𝑊 → ( 𝐶 ∈ { 𝐴 , 𝐵 } ↔ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ) |
| 5 |
|
orcom |
⊢ ( ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ↔ ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐴 ) ) |
| 6 |
|
nne |
⊢ ( ¬ 𝐵 ≠ 𝐶 ↔ 𝐵 = 𝐶 ) |
| 7 |
|
eqcom |
⊢ ( 𝐵 = 𝐶 ↔ 𝐶 = 𝐵 ) |
| 8 |
6 7
|
bitr2i |
⊢ ( 𝐶 = 𝐵 ↔ ¬ 𝐵 ≠ 𝐶 ) |
| 9 |
|
nne |
⊢ ( ¬ 𝐶 ≠ 𝐴 ↔ 𝐶 = 𝐴 ) |
| 10 |
9
|
bicomi |
⊢ ( 𝐶 = 𝐴 ↔ ¬ 𝐶 ≠ 𝐴 ) |
| 11 |
8 10
|
orbi12i |
⊢ ( ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐴 ) ↔ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) |
| 12 |
5 11
|
bitri |
⊢ ( ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ↔ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) |
| 13 |
4 12
|
bitrdi |
⊢ ( 𝐶 ∈ 𝑊 → ( 𝐶 ∈ { 𝐴 , 𝐵 } ↔ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) ) |
| 14 |
13
|
biimpd |
⊢ ( 𝐶 ∈ 𝑊 → ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) ) |
| 15 |
14
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) ) |
| 16 |
15
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 } ) → ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) |
| 17 |
16
|
olcd |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 } ) → ( ¬ 𝐴 ≠ 𝐵 ∨ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) ) |
| 18 |
17
|
ex |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ¬ 𝐴 ≠ 𝐵 ∨ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) ) ) |
| 19 |
|
3orass |
⊢ ( ( ¬ 𝐴 ≠ 𝐵 ∨ ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ↔ ( ¬ 𝐴 ≠ 𝐵 ∨ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) ) |
| 20 |
18 19
|
imbitrrdi |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ¬ 𝐴 ≠ 𝐵 ∨ ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) ) |
| 21 |
|
3ianor |
⊢ ( ¬ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ↔ ( ¬ 𝐴 ≠ 𝐵 ∨ ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) |
| 22 |
20 21
|
imbitrrdi |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐶 ∈ { 𝐴 , 𝐵 } → ¬ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) ) |
| 23 |
22
|
con2d |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) → ¬ 𝐶 ∈ { 𝐴 , 𝐵 } ) ) |
| 24 |
23
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ¬ 𝐶 ∈ { 𝐴 , 𝐵 } ) |
| 25 |
|
hashunsng |
⊢ ( 𝐶 ∈ 𝑊 → ( ( { 𝐴 , 𝐵 } ∈ Fin ∧ ¬ 𝐶 ∈ { 𝐴 , 𝐵 } ) → ( ♯ ‘ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) = ( ( ♯ ‘ { 𝐴 , 𝐵 } ) + 1 ) ) ) |
| 26 |
25
|
imp |
⊢ ( ( 𝐶 ∈ 𝑊 ∧ ( { 𝐴 , 𝐵 } ∈ Fin ∧ ¬ 𝐶 ∈ { 𝐴 , 𝐵 } ) ) → ( ♯ ‘ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) = ( ( ♯ ‘ { 𝐴 , 𝐵 } ) + 1 ) ) |
| 27 |
1 3 24 26
|
syl12anc |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ( ♯ ‘ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) = ( ( ♯ ‘ { 𝐴 , 𝐵 } ) + 1 ) ) |
| 28 |
|
simpr1 |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → 𝐴 ≠ 𝐵 ) |
| 29 |
|
3simpa |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) |
| 31 |
|
hashprg |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
| 33 |
28 32
|
mpbid |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
| 34 |
33
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) + 1 ) = ( 2 + 1 ) ) |
| 35 |
27 34
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ( ♯ ‘ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) = ( 2 + 1 ) ) |
| 36 |
|
df-tp |
⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) |
| 37 |
36
|
fveq2i |
⊢ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = ( ♯ ‘ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) |
| 38 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 39 |
35 37 38
|
3eqtr4g |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 3 ) |
| 40 |
39
|
ex |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 3 ) ) |
| 41 |
|
nne |
⊢ ( ¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵 ) |
| 42 |
|
hashprlei |
⊢ ( { 𝐵 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 ) |
| 43 |
|
prfi |
⊢ { 𝐵 , 𝐶 } ∈ Fin |
| 44 |
|
hashcl |
⊢ ( { 𝐵 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℕ0 ) |
| 45 |
44
|
nn0zd |
⊢ ( { 𝐵 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ) |
| 46 |
43 45
|
ax-mp |
⊢ ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ |
| 47 |
|
2z |
⊢ 2 ∈ ℤ |
| 48 |
|
zleltp1 |
⊢ ( ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) < ( 2 + 1 ) ) ) |
| 49 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 50 |
49
|
a1i |
⊢ ( ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( 2 + 1 ) = 3 ) |
| 51 |
50
|
breq2d |
⊢ ( ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐵 , 𝐶 } ) < ( 2 + 1 ) ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) < 3 ) ) |
| 52 |
51
|
biimpd |
⊢ ( ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐵 , 𝐶 } ) < ( 2 + 1 ) → ( ♯ ‘ { 𝐵 , 𝐶 } ) < 3 ) ) |
| 53 |
48 52
|
sylbid |
⊢ ( ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐵 , 𝐶 } ) < 3 ) ) |
| 54 |
46 47 53
|
mp2an |
⊢ ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐵 , 𝐶 } ) < 3 ) |
| 55 |
44
|
nn0red |
⊢ ( { 𝐵 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℝ ) |
| 56 |
43 55
|
ax-mp |
⊢ ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℝ |
| 57 |
|
3re |
⊢ 3 ∈ ℝ |
| 58 |
56 57
|
ltnei |
⊢ ( ( ♯ ‘ { 𝐵 , 𝐶 } ) < 3 → 3 ≠ ( ♯ ‘ { 𝐵 , 𝐶 } ) ) |
| 59 |
54 58
|
syl |
⊢ ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 → 3 ≠ ( ♯ ‘ { 𝐵 , 𝐶 } ) ) |
| 60 |
59
|
necomd |
⊢ ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐵 , 𝐶 } ) ≠ 3 ) |
| 61 |
60
|
adantl |
⊢ ( ( { 𝐵 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 ) → ( ♯ ‘ { 𝐵 , 𝐶 } ) ≠ 3 ) |
| 62 |
42 61
|
mp1i |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐵 , 𝐶 } ) ≠ 3 ) |
| 63 |
|
tpeq1 |
⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐵 , 𝐶 } ) |
| 64 |
|
tpidm12 |
⊢ { 𝐵 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 } |
| 65 |
63 64
|
eqtr2di |
⊢ ( 𝐴 = 𝐵 → { 𝐵 , 𝐶 } = { 𝐴 , 𝐵 , 𝐶 } ) |
| 66 |
65
|
fveq2d |
⊢ ( 𝐴 = 𝐵 → ( ♯ ‘ { 𝐵 , 𝐶 } ) = ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 67 |
66
|
neeq1d |
⊢ ( 𝐴 = 𝐵 → ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≠ 3 ↔ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 68 |
62 67
|
imbitrid |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 69 |
41 68
|
sylbi |
⊢ ( ¬ 𝐴 ≠ 𝐵 → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 70 |
|
hashprlei |
⊢ ( { 𝐴 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 ) |
| 71 |
|
prfi |
⊢ { 𝐴 , 𝐶 } ∈ Fin |
| 72 |
|
hashcl |
⊢ ( { 𝐴 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℕ0 ) |
| 73 |
72
|
nn0zd |
⊢ ( { 𝐴 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ) |
| 74 |
71 73
|
ax-mp |
⊢ ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ |
| 75 |
|
zleltp1 |
⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 ↔ ( ♯ ‘ { 𝐴 , 𝐶 } ) < ( 2 + 1 ) ) ) |
| 76 |
49
|
a1i |
⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( 2 + 1 ) = 3 ) |
| 77 |
76
|
breq2d |
⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐶 } ) < ( 2 + 1 ) ↔ ( ♯ ‘ { 𝐴 , 𝐶 } ) < 3 ) ) |
| 78 |
77
|
biimpd |
⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐶 } ) < ( 2 + 1 ) → ( ♯ ‘ { 𝐴 , 𝐶 } ) < 3 ) ) |
| 79 |
75 78
|
sylbid |
⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐶 } ) < 3 ) ) |
| 80 |
74 47 79
|
mp2an |
⊢ ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐶 } ) < 3 ) |
| 81 |
72
|
nn0red |
⊢ ( { 𝐴 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℝ ) |
| 82 |
71 81
|
ax-mp |
⊢ ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℝ |
| 83 |
82 57
|
ltnei |
⊢ ( ( ♯ ‘ { 𝐴 , 𝐶 } ) < 3 → 3 ≠ ( ♯ ‘ { 𝐴 , 𝐶 } ) ) |
| 84 |
80 83
|
syl |
⊢ ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 → 3 ≠ ( ♯ ‘ { 𝐴 , 𝐶 } ) ) |
| 85 |
84
|
necomd |
⊢ ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐶 } ) ≠ 3 ) |
| 86 |
85
|
adantl |
⊢ ( ( { 𝐴 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 ) → ( ♯ ‘ { 𝐴 , 𝐶 } ) ≠ 3 ) |
| 87 |
70 86
|
mp1i |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐶 } ) ≠ 3 ) |
| 88 |
|
tpeq2 |
⊢ ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐶 , 𝐶 } ) |
| 89 |
|
tpidm23 |
⊢ { 𝐴 , 𝐶 , 𝐶 } = { 𝐴 , 𝐶 } |
| 90 |
88 89
|
eqtr2di |
⊢ ( 𝐵 = 𝐶 → { 𝐴 , 𝐶 } = { 𝐴 , 𝐵 , 𝐶 } ) |
| 91 |
90
|
fveq2d |
⊢ ( 𝐵 = 𝐶 → ( ♯ ‘ { 𝐴 , 𝐶 } ) = ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 92 |
91
|
neeq1d |
⊢ ( 𝐵 = 𝐶 → ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≠ 3 ↔ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 93 |
87 92
|
imbitrid |
⊢ ( 𝐵 = 𝐶 → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 94 |
6 93
|
sylbi |
⊢ ( ¬ 𝐵 ≠ 𝐶 → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 95 |
|
hashprlei |
⊢ ( { 𝐴 , 𝐵 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 ) |
| 96 |
|
hashcl |
⊢ ( { 𝐴 , 𝐵 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℕ0 ) |
| 97 |
96
|
nn0zd |
⊢ ( { 𝐴 , 𝐵 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ) |
| 98 |
2 97
|
ax-mp |
⊢ ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ |
| 99 |
|
zleltp1 |
⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) < ( 2 + 1 ) ) ) |
| 100 |
49
|
a1i |
⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( 2 + 1 ) = 3 ) |
| 101 |
100
|
breq2d |
⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) < ( 2 + 1 ) ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) < 3 ) ) |
| 102 |
101
|
biimpd |
⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) < ( 2 + 1 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) < 3 ) ) |
| 103 |
99 102
|
sylbid |
⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐵 } ) < 3 ) ) |
| 104 |
98 47 103
|
mp2an |
⊢ ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐵 } ) < 3 ) |
| 105 |
96
|
nn0red |
⊢ ( { 𝐴 , 𝐵 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℝ ) |
| 106 |
2 105
|
ax-mp |
⊢ ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℝ |
| 107 |
106 57
|
ltnei |
⊢ ( ( ♯ ‘ { 𝐴 , 𝐵 } ) < 3 → 3 ≠ ( ♯ ‘ { 𝐴 , 𝐵 } ) ) |
| 108 |
104 107
|
syl |
⊢ ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 → 3 ≠ ( ♯ ‘ { 𝐴 , 𝐵 } ) ) |
| 109 |
108
|
necomd |
⊢ ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 3 ) |
| 110 |
109
|
adantl |
⊢ ( ( { 𝐴 , 𝐵 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 3 ) |
| 111 |
95 110
|
mp1i |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 3 ) |
| 112 |
|
tpeq3 |
⊢ ( 𝐶 = 𝐴 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 , 𝐴 } ) |
| 113 |
|
tpidm13 |
⊢ { 𝐴 , 𝐵 , 𝐴 } = { 𝐴 , 𝐵 } |
| 114 |
112 113
|
eqtr2di |
⊢ ( 𝐶 = 𝐴 → { 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } ) |
| 115 |
114
|
fveq2d |
⊢ ( 𝐶 = 𝐴 → ( ♯ ‘ { 𝐴 , 𝐵 } ) = ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 116 |
115
|
neeq1d |
⊢ ( 𝐶 = 𝐴 → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 3 ↔ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 117 |
111 116
|
imbitrid |
⊢ ( 𝐶 = 𝐴 → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 118 |
9 117
|
sylbi |
⊢ ( ¬ 𝐶 ≠ 𝐴 → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 119 |
69 94 118
|
3jaoi |
⊢ ( ( ¬ 𝐴 ≠ 𝐵 ∨ ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 120 |
21 119
|
sylbi |
⊢ ( ¬ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 121 |
120
|
com12 |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ¬ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 122 |
121
|
necon4bd |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 3 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) ) |
| 123 |
40 122
|
impbid |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ↔ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 3 ) ) |