Description: 'Less than' implies not equal. (Contributed by NM, 28-Jul-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lt.1 | ⊢ 𝐴 ∈ ℝ | |
lt.2 | ⊢ 𝐵 ∈ ℝ | ||
Assertion | ltnei | ⊢ ( 𝐴 < 𝐵 → 𝐵 ≠ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | ⊢ 𝐴 ∈ ℝ | |
2 | lt.2 | ⊢ 𝐵 ∈ ℝ | |
3 | ltne | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ≠ 𝐴 ) | |
4 | 1 3 | mpan | ⊢ ( 𝐴 < 𝐵 → 𝐵 ≠ 𝐴 ) |