Metamath Proof Explorer


Theorem ltnei

Description: 'Less than' implies not equal. (Contributed by NM, 28-Jul-1999)

Ref Expression
Hypotheses lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
Assertion ltnei ( 𝐴 < 𝐵𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 lt.1 𝐴 ∈ ℝ
2 lt.2 𝐵 ∈ ℝ
3 ltne ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵𝐴 )
4 1 3 mpan ( 𝐴 < 𝐵𝐵𝐴 )